Cuarto problema de Apolonio (PPC)

Circunferencia que pasa por dos puntos dados y es tangente a otra circunferencia dada.
Circunferencia que pasa por dos puntos dados y es tangente a otra circunferencia dada.

En esta entrada presento un breve apunte geométrico del Cuarto problema de Apolonio, sigue de la entrada hecha ya en este blog, sobre los problemas 1 y 2 de Apolonio (Click aquí) y el tercer problema (click aquí)

En este cuarto problema se resuelve el caso de encontrar una circunferencia que pasa por dos puntos y es tangente a otra circunferencia dada. Como preliminares, introducimos la noción de Potencia de un punto respecto a una circunferencia y la de Eje radical.

El clip es una presentación PowerPoint pasada a vídeo, recomendable ver en HD a pantalla completa.

 

El problema de Apolonio (1 y 2); Tangencias: Apolonio de Perga

En recuerdo de Edmond Halley, el gran  admirador de la obra de Apolonio, en el año del acercamiento de su cometa.

D. Miguel de Guzmán; Insigne Matemático Español.

Así dedicaba el inolvidable y egregio profesor D. Miguel de Guzmán un artículo sobre Apolonio escrito en 1986. Sirva esta entrada como mi humilde tributo a D. Miguel de Guzmán, quien glosaba la figura de éste irrepetible geómetra, en los términos que siguen: (Tomo literal de su artículo)

“De los tres grandes matemáticos del helenismo, Euclides, Arquímedes y Apolonio, este último ha sido el menos conocido a lo largo de los siglos. Aunque del personaje Euclides no sabemos casi nada, su obra fue pronto el paradigma de la sistematización del saber matemático, la obra de los fundamentos, y conservó este halo por siempre. Arquímedes, por su genio polifacético y por las leyendas creadas alrededor de su persona, coronadas con la historia de su muerte, es sin duda, de entre los tres, la figura más conocida universalmente”.

Apolonio representa la grandeza técnica especializada, el virtuosismo geométrico por excelencia.

Es verdad que su obra hizo olvidar lo que antes de él se había escrito en el campo de su mayor brillantez, las cónicas, pero por su carácter tan especializado y tan difícil, ni siquiera esta obra maestra, las Cónicas, se conoce hoy en su integridad y más de la mitad de ella permaneció oculta para el mundo occidental hasta que fue publicada por Edmond Halley en 1710.

La mayor parte de los exiguos datos conocidos sobre la vida de Apolonio provienen de unas pocas noticias que el propio autor reseña en las introducciones a algunos de los libros de su magna obra Las Cónicas. Se sabe que nació hacia el año 262 a.C., en Perga, región de Panfilia (la actual Antalya, Turquía).

Ágora en Perga, actual Antalya es una ciudad situada en la costa mediterránea del suroeste de Turquía.

Estudió en el Museo de Alejandría con los sucesores de Euclides; y residió tanto en la propia capital alejandrina como en Éfeso y Pérgamo, urbe que gozaba del prestigio de una Biblioteca y un emporio académico del Saber, similares a los de Alejandría, ciudad donde murió hacia el 190 a.C. Según relata Pappus (siglo IV d.C) en La Colección Matemática, donde aparecen numerosas referencias a la obra de Apolonio, el Gran Geómetra era de trato difícil y tenía un carácter melancólico e irascible. El gran historiador de la matemática F.Vera en su edición de Las Cónicas (en Científicos griegos. Aguilar, Madrid, 1970, p.301) dice que «Apolonio era un genio de mal genio».

Cónicas de Apolonio

La influencia de Apolonio en los geómetras griegos y árabes fue muy profunda. No en vano Apolonio fue llamado El Geómetra en la Antigüedad. Sobre porciones más o menos extensas de su obra escribieron comentarios Pappus (IV d.de C.) Serenus Antissensis (IV), Hyppathia (V), Eutoquio (VI), Abalphat de Ispahan (X), Abdomelek de Chiraz (XIII),…

Secciones cónicas

La obra de Apolonio comienza a filtrarse hacia Occidente lentamente por vía de la matemática árabe. Vitelio, monje polaco establecido en Italia, escribe en 1260 un tratado de óptica, que en el fondo es un comentario al tratado de óptica del árabe Al-Hazen, que residió en la península ibérica en el siglo XI, y en el que se contienen diversas proposiciones geométricas de Apolonio.

Siendo “Las cónicas” su obra más conocida, Apolonio escribió unas cuantas obras más que se difundieron bastante en su entorno, una buena parte relativa a geometría, otras a campos de la física donde sus profundos conocimientos geométricos más pudieron aportar, como es el caso del estudio de la reflexión sobre espejos curvos, otras de astronomía, campo este en el que Apolonio ejerció una notable influencia, viniendo citado explícitamente por Tolomeo, autor del Almagesto (ca.140 d.de C.) como responsable de un importante teorema en la teoría de epiciclos. Pero parece cierto que las otras obras matemáticas de las que nos han llegado noticias fueron de interés más bien puntual, a juzgar por el tipo de problemas que trataban. He aquí una descripción sucinta de  dos de ellas: Sobre la sección de la razón (logou apotomh) y Tangencias.

La única obra, aparte de las Cónicas, que ha sobrevivido hasta nosotros, tiene por título Sobre la sección de la razón (logou apotomh) que fue conservada en árabe y traducida por Halley al latín en 1706. Halley había hecho el esfuerzo de aprender árabe a fin de ser capaz de leer esta obra de Apolonio.

La obra que en esta entrada tratamos es “Las tangencias”.

La obra titulada Tangencias,  se hizo especialmente famosa a lo largo de la historia por contener lo que se vino a llamar el Problema de Apolonio.

Dados tres elementos, cada uno de los cuales puede ser un punto, una recta o una circunferencia, se pide hallar una circunferencia que sea tangente a ellos (pase por ellos en el caso de puntos). El caso más complicado, dadas tres circunferencias hallar otra tangente a las tres, es el mencionado problema de Apolonio. No conociéndose exactamente la solución de Apolonio, esta cuestión interesó vivamente a muchos matemáticos famosos, entre ellos Vieta, Descartes, Newton, Euler, Poncelet,…

Conocemos como “problemas de Apolonio”, al siguiente problema de tangencias:

Dados tres objetos que pueden ser, cada uno de ellos, punto, recta o circunferencia, construir la/las  circunferencias que sean tangentes a los tres (en el caso de puntos, que pase por ellos).

Llamaremos

P:  que pase por un punto.

R:  que sea tangente a una recta.

C:  que sea tangente a una circunferencia.

Se obtienen los siguientes 10  casos:

1.- PPP    Construir una circunferencia que pase por tres puntos dados.

2.- PPR    Dados dos puntos y una recta, construir la circunferencia que pase por los dos puntos y sea tangente a la recta.

3.- RRR    Construir una circunferencia que sea tangente a tres rectas dadas.

4.- PPC    Dados dos puntos y una circunferencia, hallar la circunferencia que pase por los dos puntos y sea tangente a la circunferencia.

5.- PRR    Dado un punto y dos rectas, construir la circunferencia que pase por el punto y sea tangente a las dos rectas.

6.- PRC   Dado un punto, una recta, y una circunferencia, hallar la circunferencia que sea tangente a la recta y circunferencia dadas y pase por el punto.

7.- PCC   Hallar una circunferencia que sea tangente a dos circunferencias dadas y pase por un punto.

8.- RRC   Construir la circunferencia que sea tangente a dos rectas y una circunferencia dadas.

9.- RCC   Construir una circunferencia tangente a otras dos circunferencias y una recta.

10.- CCC Construir una circunferencia que sea tangente a tres circunferencias dadas.

Solución al problema 10 (CCC) de Apolonio.

Se habla a veces, del Problema de Apolonio, suele referirse en este caso al ultimo de los enunciados, esto es, construir una circunferencia tangente a otras tres circunferencias dadas. Este es el más complicado de los 10 anteriores, y del que no se conoce la solución que dio el propio Apolonio.

En esta entrada damos solución gráfica a los dos primeros problemas de Apolonio, siendo ésta una de una serie en construcción donde se tratará la solución de los diez problemas propuestos por Apolonio en su “Tangencias”.

Ver el vídeo a pantalla completa con 720p HD, es una opción.

La Cisoide de Diocles; La duplicación del cubo: algo de historia

Grecia, patria del conocimiento de occidente.

Existen tres problemas principales que preocuparon a los matemáticos griegos y que no pudieron resolver geométricamente, sólo con la ayuda de una regla (sin graduación) y un compás. Se trata de la duplicación del cubo, de la trisección de un ángulo (ambos problemas están relacionados con la obtención de la raíz cúbica de un número entero con métodos geométricos) y la cuadratura del círculo, relacionado con la trascendencia del número pi (pi no puede ser obtenido algebráicamente con ningún polinomio). Fue Proclo y otros comentaristas los que atribuyen a Hipias la construcción de la cuadratriz , que recibe también el nombre el nombre de “trisectriz de Hipias”, que es una curva que permite realizar la trisección de un ángulo y que posteriormente Dinóstrato utilizó también para hallar la cuadratura del círculo, denominándose por ello: cuadratriz. Nota: Esta curva y su construcción ha sido tratada en este blog, este es el enlace: Cuadratriz.

Cuadratriz de Hipias

Los griegos, intuitivamente llegaron a concluir que los tres problemas no se podían resolver sólo con regla y compás; debieron pasar aproximadamente dos milenios para que Lamber y Legendre demostraran que el número π no es racional (siglo XVIII). Fue hasta 1882, que Linderman, en una memoria publicada en los Mathematische Annalen demuestra que el número π es trascendente, siguiendo un proceso similar al descubierto por Hermite en 1873 con respecto a la trascendencia del número e.

En 1837, Pierre Wantzel publicó en el Journal de Liouville la demostración del siguiente teorema: “Un número real es construible con regla y compás si verifica dos condiciones (además son necesarias y suficientes): (1) El número es algebraico sobre Q; (2) El polinomio irreducible que lo contiene como raíz es una potencia de 2” . Con este resultado Wantzel pone fin a la antigua polémica sobre si un problema geométrico puede o no ser resuelto mediante regla y compás, demostrando así que los tres problemas son irresolubles con las condiciones impuestas en sus inicios.

Algo de Leyenda sobre la duplicación del cubo.

Según el historiador griego Plutarco, los habitantes de la ciudad griega de Atenas sufríeron una epidemia de peste allá por el 429 a.C. Como adoraban al dios Apolo y éste era patrón de la ciudad de Delfos, algunos atenienses fueron a Delfos a consultar a un oráculo de este dios griego sobre cómo podrían detener la epidemia.

Delfos

El oráculo les respondió que debían sustituir el altar a Apolo por otro del doble de volumen (desde luego, una respuesta de dudosa utilidad). El altar era cúbico, y los griegos eran muy aficionados a la geometría. Así que se planteó el dilema de cómo calcular el lado u>0 de un cubo de volumen doble de otro cubo dado, de lado a>0. Este problema se conoce como la duplicación del cubo. Evidentemente, la ecuación a resolver era:

u3=2a3

siendo a conocido y u incógnita. Nosotros sabemos despejar u en esa ecuación, pero lo que los griegos querían no era despejarla sino construir el nuevo altar.

Pero veamos con algo de más detenimiento como evolucionó la solución de este problema sin regla graduada y compás.

Hipócrates de Quíos y la duplicación del cubo

Isla de Chios -Grecia-

Hipócrates de Quíos fue un matemático, geómetra y astrónomo griego, que vivió aproximadamente entre el 470 y el 410 a. C..

Hipócrates de Quios

Nació en la isla de Quíos, enfrente de las costas de la actual Turquía. Hipócrates de Quíos es conocido por su cuadratura de la lúnula, esto es, la cuadratura mediante regla y compás, de una lúnula de características muy específicas.

Fue el primero en calcular áreas de regiones delimitadas por segmentos curvilíneos no rectos, en relación con el problema de la cuadratura del círculo. Para ello se valió del teorema que afirma que «la razón entre el área de dos círculos es la misma que la razón entre el cuadrado de sus radios».

Este estudio sobre Hipócrates, sus lúnulas y la cuadratura del círculo serán objeto de una futura entrada en este blog.

Las Lúnulas de Hipócrates. Solución parcial de la tarea «cuadratura del círculo», sugerida por Hipócrates. La superficie de la figura sombreada es igual a la del triángulo ABC. No es una solución completa del reto (la solución completa se ha demostrado que es imposible con regla y compás).

Las proporciones continuas

En relación con la duplicación del cubo probó que esta era posible siempre que pudieran encontrarse medias proporcionales entre un número y su duplo.

Las cuadraturas de Hipócrates tienen una gran importancia, no tanto como intentos dirigidos a la cuadratura del círculo cuanto como reflejo del nivel de la matemática de la época, ya que nos muestran hasta qué punto dominaban los matemáticos atenienses de la época las transformaciones de áreas y las proporciones. En particular no tenían evidentemente ninguna dificultad en convertir un rectángulo de lados “a” y “b” en un cuadrado, lo que requería hallar la media proporcional o geométrica entre sus lados; es decir, que si debía verificarse la proporción a/x=x/b, los geómetras de la época sabían perfectamente construir el segundo “x”. Era natural, pues, que estos mismos geómetras intentaran generalizar el problema al de interpolar dos medias  entre dos magnitudes dadas “a” y “b”; es decir, dados dos segmentos a y b intentaran construir otros dos segmentos x e y tales que a/x=x/y=y/b. Se dice que Hipócrates fue el primero en reconocer que este problema es equivalente al de la duplicación del cubo si tomamos b=2ª, ya que entonces la proporción continua conduce, por eliminación de y, a la conclusión de que x3=2a3 , es decir, a la obtención de la raíz cúbica de 2.

Arquitas y la duplicación del cubo

Arquitas fue un filósofo, matemático, astrónomo, estadista y general contemporáneo de Platón. Nació en Tarento (Magna Grecia, hoy Italia) en el año 428 a. C. y falleció en un naufragio en el mar Adriático en el año 347 a. C. Fue alumno de la escuela de Filolao de Crotona. Más tarde aprendió matemáticas de Eudoxo de Cnidos, siendo a su vez maestro de Menecmo. Influenció a Euclides.

Columnas dóricas en Tarento, sur de Italia, antigua Magna Grecia.

Es muy probable que Arquitas tuviera acceso a algún tratado anterior sobre los elementos de la matemática y, de hecho, el proceso iterativo para el cálculo de raíces cuadradas que se conoce a veces con el nombre de Arquitas había sido usado mucho antes en Mesopotamia (Ver entrada en este blog: Matemáticas en Mesopotamia). No obstante sabemos que a Arquitas se le deben también algunos resultados originales importantes. Su contribución más sorprendente fue, sin duda, una solución tridimensional al problema de la duplicación del cubo de Delfos, que podemos hoy haciendo uso de la geometría analítica explicar de manera sencilla:

Sea “a” la arista del cubo que hay que duplicar, y considérense tres circunferencias de radio “a” con centro en el punto (a,0,0) y situadas cada una en un plano perpendicular a cada uno de los ejes de coordenadas. Por la circunferencia perpendicular al eje OX trácese el cono circular de vértice el origen (0,0,0); Sobre la circunferencia situada sobre el plano OXY considérese el cilindro circular recto de eje paralelo al eje OZ, y hágase girar por último la circunferencia situada en el plano OXZ alrededor del eje Oz para generar así un toro. Las ecuaciones de estas superficies son respectivamente,  x2=y2+z2, 2ax=x2+y2  y (x2+y2+z2)=4 a2(x2+y2), estas tres superficies se cortan en un punto cuya coordenada “x” es  a. 3 V2, exactamente la arista del cubo buscado.

Menecmo y la duplicación del cubo

Menecmo (ca. 380 – ca. 320 a. C. ) fue un matemático y geómetra griego. Nació en el primer tercio del siglo IV antes de Cristo, en Alopeconnesus (actualmente en Turquía). Era hermano de Dinóstrato.

Alopeconnesus (actualmente en Turquía)

Fue discípulo de Platón y Eudoxo, y tutor de Alejandro Magno.

Su estudio teórico de las secciones cónicas fue célebre en la antigüedad, por eso estas curvas tuvieron el nombre de curvas de Menecmo.

Menecmo no podía prever la cantidad de bellas propiedades que el futuro se iba a encargar de descubrir en sus curvas. El había dado con las cónicas como  resultado de una afortunada búsqueda de curvas que tuvieran las propiedades requeridas para resolver el problema de la duplicación del cubo.

Parabológrafo de Cavalieri basado en la teoría de proporciones de Menecmo.

Utilizando la notación moderna puede obtenerse fácilmente la solución del siguiente modo:

Si queremos duplicar un cubo de arista “a” construiremos dos parábolas como secciones de un cono recto, una de “latus rectum a (eje vertical)” y otra de “latus rectum 2.a (eje horizontal)” . El punto de intersección de estas dos parábolas tendrá de coordenadas (x,y) que satisfacen la proporción continua establecida por Hipócrates de Quios: a/=x/y=y/2.a , con x= a.3V2, e y= a.3V4, siendo x la arista del cubo buscado.

Es probable que Menecmo supiera también que la duplicación del cubo se puede obtener de la intersección de una hipérbola (xy=a2) y una parábola (y2=(a/2).x)

La Cisoide, Diocles y la duplicación del cubo.

Diocles (Διοκλῆς en griego antiguo , ca 240 AC -.. ca 180 aC) matemático y geómetra griego.

Aunque se sabe poco sobre la vida de Diocles, se sabe que fue contemporáneo de Apolonio y que floreció hacia finales del siglo tercero antes de Cristo y el comienzo del segundo siglo antes de Cristo.

Fragmentos de una obra de Diocles titulada  Los espejos incendiarios fueron conservados por Eutocius en su comentario dirigido a  Arquímedes “Sobre la esfera y el cilindro”. Históricamente, su obra los espejos incendiarios tuvo una gran influencia sobre los matemáticos árabes, especialmente en al-Haytham , el gran pensador del siglo 11 de El Cairo, a quien los europeos conocían como “Alhazen”.

Ibn al-Haytham (Alhacen)

El tratado contiene dieciséis proposiciones que están probadas por las secciones cónicas . Uno de los fragmentos contiene proposiciones (siete y ocho), que proporcionan una solución al problema de dividir una esfera por un plano de modo que los dos volúmenes resultantes están en una relación dada. La proposición diez da una solución al problema de la duplicación del cubo. Esto es equivalente a resolver una cierta ecuación cúbica . Otro fragmento contiene proposiciones (once y doce), que utilizan la cisoide para resolver el problema de encontrar dos medias proporcionales entre dos magnitudes.

Las distintas ecuaciones, polar, paramétricas e implícita de la cisoide:

En este clip, presento la construcción de la cisoide y la obtención de un segmento de longitud la raíz cúbica de 2. (Ver a 720p, pantalla completa en HD)

La Loxodromia: Curva de los navegantes

Loxodromia o Loxodrómica

Se denomina loxodrómica o loxodromia (del griego λοξóς -oblicuo- y δρóμος -carrera, curso-), a la línea que une dos puntos cualesquiera de la superficie terrestre cortando a todos los meridianos con el mismo ángulo. La loxodrómica, por tanto, es fácil de seguir manteniendo el mismo rumbo marcado por la brújula. Su representación en el mapa dependerá del tipo de proyección del mismo, como veremos en este artículo en la proyección de Mercator es una recta.

Desde el punto de vista geométrico, la Loxodromia es una hélice esférica de ecuaciones:

Pedro Nuñes, un geógrafo portugués, publicó en Tratado de la navegación (1546) un descubrimiento con grandes implicaciones para la navegación. Antes de él se creía que, marchando sobre la superficie terrestre con un rumbo fijo, es decir, formando un ángulo constante con la meridiana, la línea recorrida era un círculo máximo. Dicho con otras palabras, que un navío que siguiese este derrotero daría la vuelta al mundo y volvería al punto de partida. Nunes señaló la falsedad de este concepto al demostrar que la curva recorrida se va acercando al polo, alrededor del cual da infinitas vueltas, sin llegar nunca a él; o, dicho en lenguaje matemático, que tiene el polo por punto asintótico. Es de hacer notar que Pedro Nuñes creía que la loxodromia era la línea mas corta entre dos puntos de la superficie esférica lo cual era muy deseable para los marinos, pero que evidentemente no era cierto, hoy sabemos que las líneas que dan la mínima distancia entre dos puntos de una superficie se llaman geodésicas. Las de un plano son, obviamente, las rectas. Las de una esfera son las circunferencias de los círculos máximos, que son aquellos que comparten centro con la esfera. Es decir, que el camino más corto entre dos puntos de una esfera lo da la intersección entre dicha esfera y un plano que contenga su centro y ambos puntos.

Loxodromia en un grabado de Escher, 1958.
Espirales esféricas grabado de Escher.

Pese al error acerca de la distancia mínima, error que los marinos no enmendarían hasta que se dieron cuenta en el siglo XIX que para acortar distancias lo mejor es seguir círculos máximos, lo cierto es que las loxodromias suponían un medio fiable para la navegación. El problema es que con las proyecciones utilizadas por aquel entonces en cartografía, la estereográfica o la cilíndrica, por ejemplo, las loxodromias eran muy dificiles de dibujar: recordemos que son hélices. Por eso Gerhard Kremer, más conocido como Gerardus Mercator, decidió buscar un tipo de proyección que diese sobre el plano las direcciones de las loxodromias. Su éxito fue absoluto, porque consiguió proyectarlas sobre el plano como líneas rectas. Esto significaba en la práctica que si un marino necesitaba saber el rumbo a seguir para ir desde desde un punto a otro de la Tierra le bastaría localizarlos sobre el mapa, unirlos con una línea recta y medir la inclinación de dicha línea respecto de la vertical, que indicaría el norte.

Este mapa del mundo en dos hojas es una de las primeras obras del famoso cartógrafo flamenco, Gerardus Mercator (1512–1594). Sólo existen dos copias del mapa: ésta, de la Biblioteca de la Sociedad Geográfica Americana, y la segunda, de la Biblioteca Pública de Nueva York. Éste es también el primer mapa donde se utilizó el nombre de América para referirse al continente de América del Norte, así como al de América del Sur, para diferenciarlos como continentes separados. Al usar el término «América» de esta forma, Mercator es responsable, junto con Martin Waldseemüller, de dar nombre al hemisferio occidental. Mercator fue maestro del grabado y creador de instrumentos matemáticos y globos terráqueos. Su solución para el problema de representar con exactitud la esfera de la Tierra en sólo dos dimensiones, la proyección en forma de doble corazón que se utiliza aquí, dio lugar a mapas mucho más precisos.

La proyección de Mercator es un tipo de proyección cartográfica cilíndrica, ideada  para elaborar planos terrestres. Es muy utilizada en planos de navegación por la facilidad de trazar rutas de rumbo constante o loxodrómicas.

Mercator, mediante proyección, pretende representar la superficie esférica terrestre sobre una superficie cilíndrica, tangente al ecuador, que al desplegarse genera un mapa terrestre plano.

Es un modelo idealizado que trata a la tierra como un globo hinchable que se introduce en un cilindro y que empieza a «inflarse» ocupando el volumen del cilindro, imprimiendo el mapa en su cara exterior. Este cilindro cortado longitudinalmente y desplegado sería parecido al mapa con la proyección de Mercator.

Visión gráfica de la idea de Mercator

Esta proyección presenta una buena aproximación en su zona central, pero las zonas superior e inferior correspondientes a norte ysur presentan grandes deformaciones. Los mapas con esta proyección se utilizaron en la época colonial con gran éxito. Europa era la potencia dominante de la época, y para los que viajaban hacia el nuevo mundo por las zonas ecuatoriales, no tenía gran importancia la deformación que poseían.

Mapa mundi de Abraham Ortelius. (Proyección de Mercator)
Mapa de África 1808.

La cuadratriz de Hipias: La trisección del ángulo y la cuadratura del círculo.

Durante la segunda mitad del siglo V a.C. floreció en Atenas un grupo de maestros profesionales muy distintos de los pitagóricos. A los discípulos de Pitágoras les había sido prohibido aceptar ningún tipo de pago por compartir sus conocimientos con los demás, mientras que los sofistas, que así se llamaban estos maestros, se ganaban la vida abiertamente enseñando a sus conciudadanos, y no sólo en cuestiones intelectualmente honradas, sino también en el arte de  <<hacer que lo peor parezca lo mejor>>.

Partenon -Atenas-
Partenon -Atenas-

Hasta cierto punto la acusación de superficialidad dirigida contra los sofistas era merecida, pero esto no debiera ocultar el hecho de que los sofistas solían estar informados ampliamente sobre muy diversos temas, y de que algunos de ellos hicieron contribuciones importantes al saber de su época. Entre estos últimos estaba Hipias, natural de Ellis y que desarrolló su actividad en Atenas durante la segunda mitad del siglo V a.C. Se trata de uno de los primeros matemáticos de los que tenemos información sobre él en dos de los diálogos de Platón, “Hipias Mayor o de lo bello” e “Hipias Menor o de la mentira”; En ambos Sócrates se muestra muy severo con Hipias y el diálogo entre ambos se vuelve un tanto agrio, con continuos reproches socráticos. Pudiera parecer que Sócrates tuviera envidia o celos por este afamado “sabio”, el único que le podía hacer sombra.

edadoscura

Los conocimientos de Hipias sobre geometría podrían dejar a Platón perplejo (recordemos que en la entrada a la Academia de Platón había una inscripción con la leyenda “No entre aquí nadie que no sepa geometría”).

Hipias de Ellis
Hipias de Ellis


Sin embargo, lo que seguramente más desagradaba a Platón es que tantos conocimientos estuvieran en posesión de alguien tan vanidoso, que defendía el relativismo moral, incapaz de establecer principios y con inclinación a saber de todo antes que a conocer algo en profundidad.

Hipias consideraba la ley no sólo como algo convencional, sino que además afirmaba que era contraria a la naturaleza. Por ello defendía la autonomía y autarquía del individuo y su derecho a rebelarse contra las leyes, porque siempre oprimen a los más débiles. Recomendaba una vuelta a la naturaleza, pues la vida en sociedad va contra la naturaleza. Se trata quizá del primer “libertario” griego.

El sofismo fue muy criticado y corregido por los grandes intelectuales de la antigua Grecia, pero sobre todo por Sócrates, Platón y Aristóteles.

45351465
La muerte de Sócrates. Jacques-Louis David, 1787

En la actualidad podemos ver individuos que nos recuerdan en su aspecto más lucrativo a estos célebres pensadores griegos. Específicamente en el campo de lo que llaman “superación personal”, pseudos-filósofos emiten (venden) conferencias, libros, artículos y demás mercancía. Estos individuos se valen de argumentos sentimentales y alejados de todo conocimiento verdadero, se convierten en “excelentes” mercaderes, sin importar si en realidad ayudan a las personas. En ningún caso igualan sus conocimientos a estos pensadores de los que tratamos en esta presentación.

Para el sofista, en su aspecto más negativo, el saber tiene una finalidad lucrativa,  para el filósofo, un camino hacia la plenitud humana.

Existen tres problemas principales que preocuparon a los matemáticos griegos y que no pudieron resolver geométricamente, sólo con la ayuda de una regla (sin graduación) y un compás. Se trata de la duplicación del cubo, de la trisección de un ángulo (ambos problemas están relacionados con la obtención de la raíz cúbica de un número entero con métodos geométricos) y la cuadratura del círculo, relacionado con la trascendencia del número pi (pi no puede ser obtenido algebraicamente con ningún polinomio). Fue Proclo y otros comentaristas los que atribuyen a Hipias la invención de esta curva que aquí tratamos , que recibe el nombre de “trisectriz de Hipias”, que es una curva que permite realizar la trisección de un ángulo y que posteriormente Dinóstrato utilizó también para hallar la cuadratura del círculo, denominándose por ello: cuadratriz.

LO que en esta presentación destacamos es la aportación a la geometría mecánica que hace Hipias con su trisectriz y posteriormente llamada cuadratriz para la resolución de dos de los tres problemas más importantes no resolubles propuestos, la trisección de un ángulo y la cuadratura del círculo.

Preferible ver en HD /720P y pantalla completa.

Cicloide: La Helena de la Geometría

La cicloide natural, una curva Braquistócrona y Tautócrona.

Los matemáticos de la antigüedad consideraban a la cicloide la más bella de las curvas. Fueron tantos los esfuerzos que dedicaron al estudio de sus sorprendentes propiedades que acabó por llamársele la “Helena de la Geometría”, en recuerdo de la mujer de Menelao, de quien se decía que por ella “se lanzaron al mar un millar de barcos”, aunque otras historias argumentan que, por lo disputada que fue entre los matemáticos de la época la resolución del problema planteado por Bernouilli.
¿El camino más corto es siempre el más rápido?
La cicloide tiene una larga historia ligada al problema de hallar la forma que debe tener un camino que una dos puntos fijos A y B para que una partícula emplee un tiempo mínimo en recorrerlo. El camino más corto es el segmento de la recta que pasa por los puntos A y B, pero el tiempo no depende sólo de la longitud del camino sino también de la velocidad de la partícula.
La curva solución del problema es la cicloide:
En 1697 Isaac Newton recibe y resuelve el problema de la braquistócrona de Jean Bernoulli. El matemático suizo Bernoulli había desafiado a sus compañeros a resolverlo antes de seis meses. Newton no sólo resolvió el problema antes de ir a la cama esa noche después de que el desafío había sido publicado, además, inventó una nueva rama de las matemáticas denominada “cálculo de variaciones”. Desde ese momento, la cicloide recibió el nombre de braquistócrona (palabra griega derivada de tiempo y mínimo). Newton publica la solución de forma anónima, pero el trabajo brillante delata su identidad, y cuando Bernoulli observa la solución, da vida a la frase: “conocemos al león por sus garras”.
La braquistocronía no es la única propiedad curiosa de la cicloide. De hecho tiene una que es más sorprendente si cabe. Podríamos enunciarla de la siguiente manera:
Supongamos que tenemos una cicloide que “cuelga” hacia abajo y que dejamos caer a lo largo de ella dos bolas desde diferentes puntos. La cuestión es que da igual desde qué puntos las dejemos caer ya que las bolas llegan a la vez al punto más bajo.
Esta propiedad se denomina tautocronía (que significa mismo tiempo). El descubrimiento de la tautocronía de la cicloide es asociado a Huygens en 1673.

Ver enlace:http://pcmap.unizar.es/~pilar/cosicas.html