Ars Qubica y las teselaciones

Ayer llegó a mis ojos la primicia en Vimeo de “Ars Qubica”, la última creación del admirado y genial infógrafo aragonés Cristóbal Vila, un espléndido trabajo sobre el “arte” de la teselación; en él podemos recrearnos en las formas geométricas de conocidos monumentos como la fachada mudéjar de la Seo de Zaragoza o las baldosas hexagonales de Gaudí que pavimentan el suelo del Paseo de Gracia en Barcelona.

Una maravillosa obra de divulgación que como en otros trabajos de este genial diseñador (véase Inspirations o Nature by number) buscan mejorar la percepción de las matemáticas en la sociedad.

Penrosetilingp1

Ars Qubica busca que las matemáticas conecten con cualquier persona a través del arte y por supuesto que lo consigue. En otra ocasión estudiaremos en este blog con detalle el inagotable mundo de las teselaciones periódicas como las del genial Escher o aperiódicas como las de Penrose, pero ahora se impone disfrutar de este prodigioso vídeo que espero disfruten.

Aquí presento un clip de prueba para una próxima publicación sobre teselaciones Periódicas y No periódicas.

 

Superficies Algebráicas: Una colección de animaciones

Aquí presento una colección de superficies algebraicas animadas con SURFER. Espero se aprecie la poesía y la belleza inmersa en las Matemáticas. El software SURFER, puede descargarse desde la página oficial de Imaginary  (Haz click aquí).

Paraguas de Whitney
Paraguas de Whitney
Superficie elicoidal
Superficie elicoidal
Toro
Toro
Spitz
Spitz
Spindel
Spindel
Silla de montar
Silla de montar
Plop animation
Plop
Octdong
Octdong
Tres planos perpendiculares entre si.
Tres planos perpendiculares entre si.
Lima
Lima
Colibri
Colibri
Cono seccionado por un plano.
Cono seccionado por un plano.
Cono
Cono
Himmel und Hoelle
Himmel und Hoelle
Herz
Herz
Fingernagel
Fingernagel
Fanfarria
Fanfarria
Ellipsis
Ellipsis
Dullo-Donuts
Dullo-Donuts
Dingdong
Dingdong
Diabolo
Diabolo
Caliz
Caliz
Calypso
Calypso

Zeck animation

Vídeo: C.R. Ipiéns

‘Abd al-Rahman ibn’ Umar al-Sufi: El libro de las estrellas fijas; Colección de imágenes.

Colección de imágenes de El libro de las estrellas fijas de ‘Abd al-Rahman ibn’ Umar al-Sufi.

El astrónomo ‘Abd al-Rahman ibn’ Umar al-Sufi, conocido comúnmente como al-Sufi, nació en Persia (actual Irán) en 903 d.C. y murió en 986. Trabajó en Isfahán y en Bagdad, y es conocido por su traducción del griego al árabe de Almagest del antiguo astrónomo Ptolomeo. La obra más famosa de Al-Sufi es Kitab suwar al-kawakib (Libro de las constelaciones de las estrellas fijas), que publicó alrededor del 964. En este trabajo, al-Sufi describe las 48 constelaciones establecidas por Ptolomeo y añade críticas y correcciones propias.

Para cada una de las constelaciones, ofrece los nombres indígenas árabes para sus estrellas, los dibujos de las constelaciones y un cuadro de estrellas que muestra su localización y magnitud. El texto tiene descripciones y cuadros de una pequeña nube, en realidad la galaxia de Andrómeda. La menciona delante de la boca de un Gran Pez, una constelación árabe. Parece que esta nube era comúnmente conocida entre los astrónomos de Isfahán muy probablemente antes del año 905.

Posiblemente también está catalogado, como una estrella nebulosa, el cúmulo estelar de Ómicron Velorum, así como un objeto nebuloso adicional en Vulpecula, un asterismo hoy conocido como Cúmulo de Al Sufi, Cúmulo de Brocchi o Collinder 399. Además, se menciona la Gran Nube de Magallanes como Al Bakr, el Buey Blanco de los árabes del sur, ya que esta galaxia es visible desde el sur de Arabia, aunque no desde latitudes más septentrionales.

El libro de Al-Sufi estimuló aún más trabajo sobre astronomía en el mundo árabe e islámico y ejerció una enorme influencia en el desarrollo de la ciencia en Europa. El trabajo fue copiado y traducido con frecuencia. Esta copia, de las colecciones de la Biblioteca del Congreso, se produjo en algún lugar de Asia central o sur, hacia 1730, y es una copia exacta de un manuscrito, hoy perdido, preparado para Ulug Beg de Samarcanda (actual Uzbekistán) en 1417 [820 AH]. La Biblioteca Nacional de Francia tiene un manuscrito de Kitab suwar al-kawakib que fue preparado para Ulug Beg en 1436.

 

2484_1_45 2484_1_53 2484_1_54 2484_1_76 2484_1_77 2484_1_83 2484_1_88 2484_1_89 2484_1_94 2484_1_95 2484_1_102 2484_1_103 2484_1_110 2484_1_111 2484_1_121 2484_1_122 2484_1_131 2484_1_132 2484_1_138 2484_1_142 2484_1_143 2484_1_150 2484_1_151 2484_1_153 2484_1_155 2484_1_157 2484_1_159 2484_1_165 2484_1_166 2484_1_177 2484_1_178 2484_1_188 2484_1_189 2484_1_194 2484_1_195 2484_1_203 2484_1_204 2484_1_214 2484_1_215 2484_1_224 2484_1_225 2484_1_230 (1) 2484_1_231 2484_1_239 2484_1_240 2484_1_245 2484_1_246 2484_1_256 2484_1_257 2484_1_265 2484_1_266 2484_1_273 2484_1_274 2484_1_281 2484_1_282 2484_1_290 (1) 2484_1_291 (1) 2484_1_296 2484_1_302 2484_1_303 2484_1_306 2484_1_307 2484_1_316 2484_1_317 2484_1_326 2484_1_327 2484_1_330 2484_1_332 2484_1_333 (1) 2484_1_343 (1) 2484_1_344 (1) 2484_1_349 2484_1_354 2484_1_357 2484_1_373 2484_1_374 al_sufi_33 heavens5 Las Constelaciones   Biblioteca Digital Mundial Las Constelaciones   Biblioteca Digital Mundial2 Las Constelaciones   Biblioteca Digital Mundial3 Las Constelaciones   Biblioteca Digital Mundiala Las Constelaciones   Biblioteca Digital Mundialb Las Constelaciones   Biblioteca Digital Mundialc Las Constelaciones   Biblioteca Digital Mundiald tumblr_ll8oytAgYi1qc0noyo1_r1_1280 tumblr_ll95ggtAuf1qc0noyo1_1280

Vídeo: El libro de las estrellas fijas, de Al-Sufi

Por: C.R. Ipiéns

Cuarto problema de Apolonio (PPC)

Circunferencia que pasa por dos puntos dados y es tangente a otra circunferencia dada.
Circunferencia que pasa por dos puntos dados y es tangente a otra circunferencia dada.

En esta entrada presento un breve apunte geométrico del Cuarto problema de Apolonio, sigue de la entrada hecha ya en este blog, sobre los problemas 1 y 2 de Apolonio (Click aquí) y el tercer problema (click aquí)

En este cuarto problema se resuelve el caso de encontrar una circunferencia que pasa por dos puntos y es tangente a otra circunferencia dada. Como preliminares, introducimos la noción de Potencia de un punto respecto a una circunferencia y la de Eje radical.

El clip es una presentación PowerPoint pasada a vídeo, recomendable ver en HD a pantalla completa.

 

Teorema de Pitágoras

Pitágoras de Samos (en griego antiguo Πυθαγόρας) (Samos ca. 580 a. C. – Metaponto ca. 495 a. C.)
Pitágoras de Samos (en griego antiguo Πυθαγόρας) (Samos ca. 580 a. C. – Metaponto ca. 495 a. C.)

Teorema de Pitágoras

En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

Pitágoras de Samos

Pitagóricos celebrando el amanecer. Óleo de Fyodor Bronnikov.
Pitagóricos celebrando el amanecer. Óleo de Fyodor Bronnikov.

El Teorema de Pitágoras es la relación matemática que ocupa el primer lugar en el recuerdo de los tiempos escolares. Es, sin duda alguna, la más importante, conocida, útil y popular en casi todas las civilizaciones; la que más nombres, atención, curiosidad y pruebas ha recibido a lo largo de los siglos. Es un teorema que ha causado una gran admiración a todo tipo de personas –matemáticos y no matemáticos–, pero también una gran extrañeza y perplejidad a otras –Leonardo, Hobbes, Schopenhauer, Einstein, …– porque, a diferencia de otros teoremas, aparentemente  no  existe  ninguna  razón  intuitiva  para  que  los  cuadrados  construidos  sobre los lados de un triángulo rectángulo –la hipotenusa y los catetos– deban tener un vínculo tan estrecho entre sí.

La  verosimilitud  del Teorema  de  Pitágoras no  depende  de  un dibujo bien ilustrado sino que obedece por completo a un ejercicio intelectual puro alejado de lo sensorial –la deducción lógica– Por  eso,  para  muchos  historiadores  de  la  ciencia,  el Teorema de Pitágoras tiene un valor simbólico iniciático como elemento cultural  responsable  de  la  aparición  de  la  Geometría  racional en la Escuela Pitagórica y por tanto forma parte ineludible de la semilla básica de la propia naturaleza de la Matemática desde su origen como ciencia especulativa y deductiva en los albores de la civilización helénica.

La emergencia de este teorema en el horizonte histórico cultural, pero también en el horizonte escolar, señala el primer salto intelectual entre los confines de la especulación empírica e inductiva y los dominios del razonamiento deductivo. En efecto, el Teorema de Pitágoras pudo estar en el origen de la demostración –que caracteriza a la Matemática con respecto a las demás ciencias– ya que la prueba pitagórica del Teorema de Pitágoras tal vez haya sido la  primera  demostración  verdaderamente  matemática  de  la  Historia. Y  también  el Teorema de Pitágoras está situado en el umbral que inicia la práctica deductiva en el desarrollo de la Matemática escolar elemental.

El Teorema de Pitágoras aparece por doquier en la Matemática. Es la base de multitud de teoremas geométricos, de los estudios sobre polígonos y poliedros, de la Geometría Analítica y de la Trigonometría. –la fórmula cos2a + sen2a = 1 es un caso particular del Teorema de Pitágoras y el Teorema del coseno es una generalización del mismo–. La relación pitagórica x2 + y2 = z2

es la ecuación de la circunferencia y la raíz histórica del Análisis indeterminado de Diofanto y Fermat. El Teorema de Pitágoras también pudo ser el germen de la dramática aparición pitagórica de la inconmensurabilidad de gran trascendencia en la estructuración y sistematización  platónico-euclídea de la Geometría griega.

Al ser la fuente de casi todas las relaciones métricas de la Geometría, El Teorema de Pitágoras–como principal tesoro de la tradición pitagórica– tiene un valor práctico, teórico y didáctico inconmensurable. Como paradigma de la Matemática y de la Educación matemática, el más fascinante  y  célebre  teorema  geométrico  pertenece  al  imaginario  cultural  de  casi  todos  los pueblos.

Árbol Fractal Pitagórico
Árbol Fractal Pitagórico

Para una lectura del artículo completo puede consultarse el siguiente enlace:

EL TEOREMA LLAMADO DE PITÁGORAS. UNA HISTORIA GEOMÉTRICA DE 4.000 AÑOSPedro Miguel González Urbaneja

Y para una completa información puede también consultarse el libro: Boyer, Carl B.: Historia de la matemática. Alianza Universidad Textos, 1992.

En este clip, presento algunas pruebas del Teorema animadas en PowerPoint así, como la construcción de un árbol fractal pitagórico; verlo a pantalla completa y en HD es una opción. Espero sea de su agrado.

Pensadores influyentes en la Historia de la Ciencia

Imagen2

De la página oficial  del MUNCYT (Museo Nacional de Ciencia y Tecnología), tomo:

Una vez más, el MUNCYT se ocupa de acercarnos la historia. Si una de sus misiones, para empujarnos al futuro, radica en la popularización y comprensión de la ciencia que se está creando, que mueve nuestro mundo y que vemos asomar en los medios de comunicación, otros objetivos nos invitan a mirar al pasado, tratando de fortalecer las raíces que sustentan nuestra cultura.

En esta obra, y en la exposición que la acompaña, los expertos han querido seleccionar, con la limitación en número que aconseja toda tarea de este género, el conjunto de libros que podríamos considerar más destacados por su trascendencia en la historia del pensamiento científico. Abarcan un período tan amplio como el de la cultura humana, y el índice de mayor o menor frecuencia a lo largo de los siglos respectivos puede ser un indicador de la presencia de las crisis y revoluciones en el mundo de las ideas. Siempre definiendo un progreso.

Si los libros representan la historia del pensamiento, este proyecto quiere recordarnos que todas la ideas científicas nacen o se hacen en el encuentro con el mundo material, con objetos de nuestro mundo. Cada libro se presenta vinculado a un objeto, en la mayor parte de los casos de la colección del MUNCYT, que nos invita a pensar en clave de historia y a poner personalmente en marcha el proceso de intervención imprescindible para que, al menos mentalmente, se puedan generar conceptos a partir de la percepción de hechos.

En esta entrada recojo los veintiséis retratos realizados por Eulogia Merle de los científicos que forman parte de la exposición ‘Libros inmortales, instrumentos esenciales’, sobre las obras que han cambiado el curso del pensamiento humano, así como una breve biografía de ellos. La muestra se inaugura el 17 de octubre de 2013 en la sede de A Coruña del Museo Nacional de Ciencia y Tecnología (MUNCYT). El catálogo de esta muestra se puede descargar desde la web del MUNCYT.

‘Tratados Hipocráticos’ de Hipócrates de Cos (460-380 a. C.). Nace la medicina como ciencia.
‘Tratados Hipocráticos’ de Hipócrates de Cos (460-380 a. C.). Nace la medicina como ciencia.

Al llamado “Padre de la medicina” le podemos reconocer tres importantes aportaciones: el racionalismo, la observación cuidadosa y la necesidad de unas normas éticas. Según la tradición era médico y nacido en la Isla de Cos, incluso emparentado con Asclepio, dios griego de la medicina. Con certeza poco o nada se sabe de su vida; quizás viajó por toda Grecia realizando observaciones y tratando enfermos, lo que le serviría para compilar toda su experiencia en una serie de escritos de medicina que se le atribuyen y que siglos más tarde dieron forma al Corpus Hippocraticum. Defiende la concepción de la enfermedad como la consecuencia de un desequilibrio entre los humores del cuerpo, teoría que desarrollaría más tarde Galeno y que dominaría hasta la Ilustración. Entre las aportaciones de la medicina hipocrática destacan: la consideración del cuerpo como un todo, el énfasis en la observación minuciosa de los síntomas y la valoración del historial clínico. En el campo de la ética médica se le atribuye el célebre “juramento hipocrático” que compromete a quien lo pronuncia a «entrar en las casas con el único fin de cuidar y curar a los enfermos» y a «mantener el secreto». Murió en la ciudad de Larissa (Tesalia) dejando tras de sí el mayor compendio médico de su época.

‘Física’ de Aristóteles de Estagira (384-322 a. C.). El primer paradigma centrado en el estudio de la naturaleza de las cosas.
‘Física’ de Aristóteles de Estagira (384-322 a. C.). El primer paradigma centrado en el estudio de la naturaleza de las cosas.

Se le conoce como El Estagirita, por haber nacido en la ciudad de Estagira (Tracia). Era hijo del médico del rey de Macedonia. Creció en la corte y al inicio de su juventud marchó a Atenas, para estudiar en la Academia de Platón, donde estuvo durante veinte años. Viajó por el Egeo, y entre otras materias estudió la zoología y botánica de la isla de Lesbos, tras lo cual fue invitado por el rey Filipo II para ser tutor de su hijo, quien años más tarde sería Alejandro Magno. A su vuelta a Atenas estableció su propia escuela en el Liceo. Había cumplido sesenta años cuando se trasladó a la isla de Eubea, donde murió. Destaca como filósofo, conocedor e integrador de múltiples disciplinas. Se le considera el fundador de la lógica deductiva en filosofía. Como científico, escribió sobre física, astronomía, anatomía, embriología, geografía, geología, meteorología y zoología. En la Física plantea tres principios básicos para explicar el movimiento de los cuerpos, distinguiendo entre movimientos naturales y movimientos forzados. Su visión cosmológica propone la delimitación de una región sublunar en la que sitúa a la Tierra, donde los movimientos naturales son verticales y pasajeros, y una supralunar que considera perfecta, donde el movimiento natural es circular y constante.

‘Elementos’ de Euclides (c. 295 a. C.). Comienza la historia de la geometría.
‘Elementos’ de Euclides (c. 295 a. C.). Comienza la historia de la geometría.

Es difícil precisar datos de la biografía del más destacado matemático de la antigüedad grecolatina, considerado el Padre de la Geometría. Solo se conocen con certeza dos hechos indiscutibles: vivió en una época intermedia entre los discípulos de Platón y los de Arquímedes, y formó una gran escuela de matemáticas en Alejandría. Según el filósofo bizantino Proclo, Euclides enseñó en esta ciudad del delta del Nilo durante el mandato de Ptolomeo I Sóter, es decir, entre los años 323 y 285 a. C. Murió en torno al año 270 a. C. Su fama radica en ser el autor de los Elementos, un tratado de geometría que ha servido de libro de texto en la materia hasta comienzos del siglo XX.

Está compuesto por trece libros que tratan de geometría en dos y tres dimensiones, proporciones y teoría de números. Presenta toda la geometría basándose en teoremas que pueden derivarse a partir de cinco axiomas o postulados muy simples que se aceptan como verdaderos.

‘Sobre los cuerpos flotantes’ de Arquímedes de Siracusa (c. 287-212 a. C.). Ideas que integran ingeniería, mecánica y matemáticas.
‘Sobre los cuerpos flotantes’ de Arquímedes de Siracusa (c. 287-212 a. C.). Ideas que integran ingeniería, mecánica y matemáticas.

Aunque resulte paradójico, por exceso de referencias –y datos discrepantes se conocen escasos detalles que sean fidedignos de la vida del renombrado matemático e ingeniero de la antigua Grecia. La biografía escrita por su amigo Heracleides no ha llegado a nuestros días, y hemos de limitarnos a historias posteriores, como las de Plutarco, Tito Livio y otros. Sabemos que visitó Alejandría, estudiando con los sucesores de Euclides, pero la mayor parte de su vida transcurrió en la ciudad-estado de Siracusa, en la isla de Sicilia, donde estaba relacionado con su rey, Hierón II. Allí compuso la mayor parte de su obra, hasta su muerte en el saqueo romano de la ciudad después de una histórica defensa. Se le atribuyen diversos ingenios mecánicos, como el llamado tornillo sin fin, la polea compuesta, o el espejo ustorio. Entre sus importantes trabajos matemáticos destacan los relacionados con el análisis de problemas hidrostáticos como Sobre los cuerpos flotantes, que contiene en su proposición séptima el celebérrimo Principio que vinculamos a su nombre. Se dice que las figuras de la esfera y el cilindro fueron grabadas en su tumba.

‘Historia natural’ de Plinio Segundo (23-79 d. C.). La más detallada enciclopedia de las maravillas del mundo conocido.
‘Historia natural’ de Plinio Segundo (23-79 d. C.). La más detallada enciclopedia de las maravillas del mundo conocido.

Conocido también como Plinio el Viejo, nació en Comum (la actual ciudad de Como, en Italia) en el seno de una próspera familia, miembro de la clase social de los caballeros romanos. En Roma estudió botánica, filosofía y retórica. A los veintitrés años inició su carrera militar en Germania y durante años dedicó su vida al ejército. Regresó a la capital del Imperio y se dedicó al estudio y cultivo de las letras, recibiendo importantes cargos de confianza. Fue procurador en Galia e Hispania. Los investigadores señalan que en sus últimos años solía dirigirse cotidianamente al palacio de Vespasiano quizá en calidad de consejero privado. A él se le atribuyen varias obras entre las que destaca su Historia Natural –presentada a Tito en el año 77 y publicada por su sobrino en el año 79-, un compendio enciclopédico que reúne gran parte del saber de su época en treinta y siete libros, cada uno dedicado a un área de conocimiento: cosmología, astronomía, geografía, zoología, botánica, agricultura, medicina y minerales. La muerte le sobrevino mientras trataba de socorrer a los ciudadanos en la erupción del Vesubio.

‘Almagesto’ de Claudio Ptolomeo (siglo II). La búsqueda de orden cósmico a través de la geometría y el número.
‘Almagesto’ de Claudio Ptolomeo (siglo II). La búsqueda de orden cósmico a través de la geometría y el número.

El hecho de que ninguno de los biógrafos griegos posteriores le dedique literatura hace suponer a los estudiosos que este ciudadano romano, probablemente de origen griego, tuvo una existencia pacífica dedicada al estudio. Por sus observaciones se estima que trabajó en Alejandría, entre los años 125 y 141 d.C. y que después de esta fecha redactó su obra Gran composición matemática de la astronomía, más conocida por su título árabe Almagesto. Dedicó su vida a la matemática, la astronomía, la geografía y la astrología. A partir de las ideas aristotélicas y de sus observaciones construyó un modelo geométrico del mundo que servía para explicar con alto grado de precisión los movimientos aparentes (vistos desde la Tierra) de los antiguos planetas o estrellas que cambian de constelación, es decir el Sol, la Luna, Marte, Mercurio, Júpiter, Venus y Saturno; era un sistema geocéntrico, según el cual la Tierra se encuentra inmóvil en el centro del universo. Por todo ello, el sistema podía usarse para predecir eclipses. Sus ideas influyeron en astrónomos y matemáticos hasta el siglo XVI.

‘Sobre el movimiento de las esferas celestes’ de Nicolás Copérnico (1473-1543). La revolución del heliocentrismo entra en escena.
‘Sobre el movimiento de las esferas celestes’ de Nicolás Copérnico (1473-1543). La revolución del heliocentrismo entra en escena.

Nació en Polonia en el seno de una adinerada familia. Quedó huérfano y bajo la tutela de su tío, obispo de Warmia. Ingresó en la Universidad de Cracovia y años más tarde en Bolonia estudió derecho canónico, recibió la influencia del humanismo italiano comenzando a mostrar interés por la astronomía. En Padua completó sus estudios con los de medicina, doctorándose en derecho canónico por la Universidad de Ferrara, regresó a su país y se incorporó a la corte episcopal. En 1513 escribió el Commentariolus –manuscrito que circuló sin que se supiera su autoría-, donde esbozaba su nuevo sistema astronómico. Fue invitado a reformar el calendario juliano. Los últimos años de su vida los dedicó a la redacción de su gran obra, De Revolutionibus Orbium Coelestium, donde defendía la hipótesis heliocéntrica. Su discípulo Rheticus llevó en 1542 una copia del manuscrito a la imprenta, publicándose en 1543. Falleció en Frombork y su teoría fue condenada por la Iglesia en 1616. Permaneció en el Índice de libros prohibidos hasta 1758.

‘De la estructura del cuerpo humano’ de Andrés Vesalio (1514-1564). El nacimiento de la anatomía moderna.
‘De la estructura del cuerpo humano’ de Andrés Vesalio (1514-1564). El nacimiento de la anatomía moderna.

Andries van Wesel – o Andreas Vesalius, su nombre latino-, nacido en Bruselas, es considerado unánimemente como el padre de la anatomía moderna. Se formó en las universidades de Lovaina, París y finalmente Padua, donde obtuvo el título de doctor en medicina magna cum laude, y fue profesor. Aplicando el método científico de observación y disección de cadáveres superó las premisas de Galeno basadas en el estudio de animales, y no de seres humanos, imperantes durante más de mil años. Solo unos pocos pioneros, como Leonardo da Vinci, a quien podemos considerar el fundador de la ilustración anatómica pocos decenios antes, se habían atrevido a realizar disecciones humanas y a hacerlo público. Una vez publicada en 1543 su obra fundamental, De humani corporis fabrica –que detalla y esclarece la anatomía humana-, Vesalio renunció a sus investigaciones en Padua por la práctica de la medicina al servicio del emperador Carlos V, y más tarde de su hijo Felipe II, en los Países Bajos y España. Al regreso de un viaje de peregrinación a Jerusalén naufragó en la isla griega de Zante, donde murió en extrañas circunstancias a los 50 años.

‘Astronomía nueva’ de Johannes Kepler (1571-1630). Las leyes matemáticas pasan a gobernar el cielo.
‘Astronomía nueva’ de Johannes Kepler (1571-1630). Las leyes matemáticas pasan a gobernar el cielo.

El científico que abrió la senda de la astronomía moderna nació en Weil der Stadt, en la actual Alemania. La miopía y la visión doble que padeció desde niño a causa de la viruela no le impidieron desvelar las leyes que rigen el movimiento de los planetas alrededor del Sol. Formado en teología en la universidad de Tubinga, su profesor de astronomía, Michael Mastlin, pronto se apercibió de su inusual capacidad intelectual ilustrándole sobre la teoría heliocéntrica de Copérnico. Su itinerante vida transcurrió principalmente entre las ciudades de Graz, Praga y Linz. Fue en la segunda donde, asalariado por el astrónomo Tycho Brahe y más tarde como Matemático Imperial bajo la protección de Rodolfo II, desarrolló sus grandes obras, como las Tabulae Rudolphinae y Astronomia Nova (1609). Es en esta última donde expuso dos de las tres leyes fundamentales que describen el movimiento de los planetas: la tercera la plasmó en Harmonices mundi Libri V (1619). Kepler fue el primer científico en demandar explicaciones físicas a los fenómenos celestes.

‘Diálogos sobre los sistemas del mundo’ de Galileo Galilei (1564-1642). Órdago por la racionalidad a modo de lección de física.
‘Diálogos sobre los sistemas del mundo’ de Galileo Galilei (1564-1642). Órdago por la racionalidad a modo de lección de física.

Uno de los máximos exponentes de la Revolución Científica, nació en Pisa, en una familia perteneciente a la baja nobleza. Inició la carrera de medicina, pero pronto la abandonó y reorientó sus estudios hacia la física y las matemáticas. Inspirado por el trabajo de Arquímedes, comenzó a realizar experiencias, y de esta primera época son sus descubrimientos sobre caída de los cuerpos, convencido de que la naturaleza le permitía contrastar las ideas de Aristóteles y de que las ideas podían defenderse libremente con razonamientos basados en la experiencia. El fallecimiento de su padre, músico, le obligó a hacerse cargo de su familia. En el invierno de 1609 utilizó un telescopio fabricado por él mismo y por primera vez lo dirigió hacia los cielos, donde se encontró con revolucionarias observaciones –como la existencia de satélites en Júpiter- y las describió en el Sidereus Nuncius. La interpretación de las mismas le llevaron a convencerse de la validez del modelo heliocéntrico de Copérnico. En 1632 publicó Dialogo sopra i due massimi sistemi del mondo Tolemaico, e Copernicano, donde defendía la cosmología copernicana en forma de un diálogo razonado. El libro fue prohibido por el Papa, y fue condenado por herejía. Tras abjurar de sus ideas, arrodillado ante los cardenales de la Inquisición, fue condenado a arresto domiciliario.

‘Disertación anatómica sobre el movimiento del corazón’ de William Harvey (1578-1637). La sangre se mueve en circuito cerrado por el cuerpo humano.
‘Disertación anatómica sobre el movimiento del corazón’ de William Harvey (1578-1637). La sangre se mueve en circuito cerrado por el cuerpo humano.

Nacido en Kent, Inglaterra, estudió medicina en Cambridge y completó su formación en la universidad de Padua. Ejerció la medicina en Londres y fue elegido como uno de los médicos del rey Jaime I así como de su sucesor, Carlos I. Entre sus amistades se contaban Francis Bacon y Thomas Hobbes. La publicación de su obra Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (1628) -donde anunció el descubrimiento de la circulación de la sangre en el cuerpo humano- le otorgó un lugar de primer orden en la historia de la ciencia y la medicina. Si bien otros ya habían avanzado respecto a las ideas de Galeno sobre la función y anatomía del corazón, las arterias, venas y pulmones, fue Harvey quien, tras multitud de experimentos cuantitativos, llegó a la conclusión de que el flujo de sangre por el cuerpo se realizaba en un circuito cerrado, donde el papel de bombeo correspondía a un órgano maravilloso, el corazón, que él denominó “sol del microcosmos”.

‘Discurso del método’ de René Descartes (1596-1650). La filosofía, camino hacia la certeza.
‘Discurso del método’ de René Descartes (1596-1650). La filosofía, camino hacia la certeza.

Filósofo, matemático y físico francés, considerado el padre de la geometría analítica y de la filosofía moderna, nació en el pueblo francés de La Haye en el seno de una familia de la baja nobleza. Se licenció en derecho por la Universidad de Poitiers y partió hacia los Países Bajos, donde sirvió como soldado durante un corto periodo de tiempo. Regresó a Francia y vendió sus posesiones para garantizarse una vida independiente. Entre 1619 y 1628 viajó y residió en varias zonas de Europa, en las que estableció contacto con prestigiosos científicos. Después de años de estudio, desarrolló un método universal de razonamiento deductivo basado en las matemáticas, en el que proponía una duda metódica, que sometiese a juicio todos los conocimientos, y que quedó formulada en su obra Discours de la méthode (1637). Su filosofía empezó a ser conocida, lo cual le acarreó amenazas de persecución religiosa. En 1649 se desplazó a Estocolmo, donde murió a consecuencia de una neumonía.

‘Micrografía’ de Robert Hooke (1635-1703). El microscopio como herramienta de investigación.
‘Micrografía’ de Robert Hooke (1635-1703). El microscopio como herramienta de investigación.

Está considerado el científico experimental más importante del siglo XVII. Estudiante en Oxford, su carrera científica despegó como discípulo de Robert Boyle estudiando la relación entre la presión y el volumen de un gas. Participó en la investigación sobre el problema marítimo de la longitud y presentó multitud de experimentos a lo largo de quince años en la Royal Society de Londres, en cuya fundación había participado. En 1665 publicó Micrographia, una de las obras maestras de la ciencia de esta centuria, profusamente ilustrada con detalladísimos dibujos al microscopio, cuyo impacto rivalizó con Sidereus Nuncius de Galileo. Tras el gran incendio de Londres de 1666 fue nombrado, en calidad de arquitecto, uno de los tres supervisores de la reconstrucción de la ciudad. Su sencilla aproximación a la ley de la elasticidad, que lleva su nombre, así como el acercamiento a la ley de la gravitación universal Newton, su gran rival, se sirvió de algunas de las deducciones de Hooke- constituyen otras de sus grandes contribuciones. Fue también inventor de aparatos mecánicos e instrumentos científicos de medida.

‘Principios matemáticos de la filosofía natural’ de Isaac Newton (1642-1727). Una síntesis de la mecánica, para Cielos y Tierra.
‘Principios matemáticos de la filosofía natural’ de Isaac Newton (1642-1727). Una síntesis de la mecánica, para Cielos y Tierra.

La mañana del día de Navidad en Inglaterra, 4 de enero en el resto de Europa, nació un niño prematuro al que los médicos desahuciaron. El abandono de su madre marcó su carácter introvertido, silencioso e irascible que le haría mantener grandes enfrentamientos con científicos de su época. Desde niño aprendió sobre todo de sus lecturas. Alentado por sus tíos ingresó en el Trinity College de Cambridge, donde obtuvo la cátedra Lucasiana de matemáticas; en esta época desarrolló la mayor parte de sus investigaciones. La llegada de la peste negra a Londres y su retiro en el campo lo alejaron momentáneamente de sus obligaciones como profesor, lo que le proporcionó un tiempo de estudio que culminó en 1687 con la publicación de Philosophiae Naturalis Principia Mathematica, obra en la que recoge los principios básicos de la dinámica, enunciando sus tres famosas leyes de la gravitación universal, y explicando con las mismas tanto el movimiento de los planetas según las leyes de Kepler como la caída acelerada de los cuerpos en la Tierra. Así se culminó la gran Revolución que destronó de la cultura la dualidad aristotélica entre cielos y tierra. Fue honrado con funerales de Estado, y sepultado en la Abadía de Westminster.

‘Sistema natural’ de Carlos Linneo (1707-1778). El punto de partida formal de la nomenclatura biológica.
‘Sistema natural’ de Carlos Linneo (1707-1778). El punto de partida formal de la nomenclatura biológica.

Naturalista y médico sueco, la vida de Carl von Linné se enmarca en una época fértil en exploraciones científicas, tanto en Europa como en América: las novedades y descubrimientos en el mundo natural apremiaron a la búsqueda de un sistema para su organización. Si bien estudió medicina, su temprano interés por la botánica –estudiando las montañas escandinavas y Laponia- decantó su trabajo hacia el desarrollo de un innovador sistema de clasificación de los seres vivos: una nueva nomenclatura binomial heredera de la lógica aristotélica que plasmaría en su obra capital, Systema Naturae (1735). Profesor de medicina y botánica en la universidad de Uppsala, su herbario se nutrió de las semillas y plantas enviadas desde remotos lugares del planeta por sus discípulos, muchos de los cuales perecieron en estas misiones. Linneo alcanzó fama mundial a través de sus minuciosas descripciones taxonómicas, principalmente del mundo vegetal.

‘Enciclopedia’ de Denis Diderot (1713-1784)y Jean Le Rond D’Alembert (1717- 1783). Una condensación del saber humano, entre los mayores best sellers de la historia.
‘Enciclopedia’ de Denis Diderot (1713-1784)y Jean Le Rond D’Alembert (1717- 1783). Una condensación del saber humano, entre los mayores best sellers de la historia.

Las vidas del filósofo y escritor Diderot y del científico y pensador D´Alembert, ambos franceses, se cruzaron en París en el año 1746, momento en el que recibieron el encargo del editor Le Breton para trabajar en el proyecto común de Encyclopèdie. El primero, licenciado en artes en la Universidad de París en 1732, procedía de una familia acomodada; destaca en él su amor al trabajo y su honradez, desechó la idea de sus padres de ser religioso y se dedicó a una vida bohemia y centrada en el trabajo. Fue quien se hizo cargo de la dirección en solitario del proyecto enciclopédico cuando D´Alembert abandonó la empresa debido a la continua campaña –contraria al proyecto- de los reaccionarios. Éste destacó por sus trabajos científicos en física y matemáticas, que le llevaron a formar parte de la Académie des Sciences con sólo veinticinco años. Encyclopèdie ou Dictionnaire raisonné des sciences, des arts et des métiers, editada entre 1751 y 1772 se convirtió en el símbolo del proyecto de la Ilustración al contener la síntesis de los principales conocimientos de la época pero “ni las vidas de los santos ni la genealogía de las casas nobles, sino la genealogía de las ciencias más valiosas para quienes pueden pensar”.

‘Tratado elemental de química’ de Antoine Lavoisier (1743-1794). La partida de nacimiento de la ciencia química, con la colaboración de su esposa Marie Anne.
‘Tratado elemental de química’ de Antoine Lavoisier (1743-1794). La partida de nacimiento de la ciencia química, con la colaboración de su esposa Marie Anne.

El padre de la química moderna nació en París durante el Siglo de las Luces, recibiendo una exquisita educación en materia científica y humanística. En 1764 se graduó en derecho, aunque él orientaba sus trabajos hacia materias científicas; dos años más tarde obtuvo la medalla de oro de la Académie des Sciences, fue admitido como miembro y la dirigió en 1785. Su más estrecha colaboradora fue su esposa, quien incluso tradujo al inglés los artículos del científico. En 1789, fundó Annales de Chimie. La expansión de sus ideas se vio favorecida con la publicación en 1789 de su obra Traité Élémentaire de Chimie en el que cabe destacar la formulación de un primer enunciado de la ley de la conservación de la materia, el primer enunciado cuantitativo de la ciencia química. Durante el Terror, fue acusado de traición debido a su posición en la Ferme Générale; tras un juicio al uso, un tribunal revolucionario lo condenó a la guillotina. Todos sus bienes fueron confiscados -incluyendo los cuadernos de notas y el laboratorio- pero su mujer logró salvar mucha documentación.

‘Principios de geología’ de Charles Lyell (1797-1875). Una obra clave en la fundación de la geología moderna.
‘Principios de geología’ de Charles Lyell (1797-1875). Una obra clave en la fundación de la geología moderna.

Heredero de una familia de terratenientes escoceses, recibió una amplia educación humanística y científica basada en la lectura, la observación de la naturaleza e innumerables viajes. Desde temprana edad su interés se decantó por la geología, disciplina que Lyell consagraría como una nueva ciencia, sometiéndola a rigurosos razonamientos. Sus observaciones en numerosos viajes le encaminaron a la tesis de que los cambios geológicos ocurridos en el pasado no eran fruto de catástrofes, sino de procesos ordinarios como los que suceden actualmente y que actuaban gradualmente en un periodo de tiempo largo. Esta teoría uniformista la fundamentará a lo largo de los volúmenes profusamente ilustrados de Principles of Geology (1830), cuyo primer tomo Darwin llevó consigo durante su travesía en el Beagle, y que inspiró sus ideas para desarrollar la teoría de la evolución. Lyell, asimismo, animó a Darwin, tras su regreso, a la publicación de The Origin of Species. A su muerte, fue enterrado en la Abadía de Westminster.

‘El origen de las especies’ de Charles Darwin (1809-1882). La teoría que revolucionó la biología: las especies evolucionan por selección natural.
‘El origen de las especies’ de Charles Darwin (1809-1882). La teoría que revolucionó la biología: las especies evolucionan por selección natural.

Nació en Inglaterra en el seno de una familia acomodada, hijo y nieto de prestigiosos médicos. Desde niño dio muestras de interés por la historia natural, en especial por el coleccionismo. Por decisión de su padre estudió medicina, pero prefería cazar y observar la naturaleza. Abandonó los estudios y por recomendación paterna ingresó en el Christ’s College de Cambridge para dedicarse a los estudios eclesiásticos. Allí contactó con el reverendo Henslow, un botánico y entomólogo que le proporcionó la oportunidad de embarcarse con el naturalista Robert Fitzroy en un viaje alrededor del mundo a bordo del Beagle. Cuando regresó, descartó la idea de una vida religiosa, se casó y tuvo diez hijos. Ya estaba convencido de que la selección era la clave del éxito humano en la obtención de mejoras útiles. En 1856 Lyell le aconsejó que trabajara en el completo desarrollo de sus ideas acerca de la evolución de las especies. Emprendió la redacción de su obra On the Origin of Species, que publicaría en 1859 y que supondría toda una revolución en su época. Está sepultado en la Abadía de Westminster.

‘Introducción al estudio de la medicina experimental’ de Claude Bernard (1813-1878). La biblia de la fisiología, la medicina se iguala a las ciencias experimentales.
‘Introducción al estudio de la medicina experimental’ de Claude Bernard (1813-1878). La biblia de la fisiología, la medicina se iguala a las ciencias experimentales.

Científico y fisiólogo francés, nació en una humilde familia de viticultores de Beaujolais, y comenzó trabajando de mancebo en una farmacia. Estudió en la facultad de medicina de París, interesándose más tarde por la biología y la filosofía; tardó en encontrar su verdadera vocación: la experimentación fisiológica. Su métodode investigación se fundamentó en la vivisección animal y en el cuestionamiento de toda teoría o doctrina establecida. Sus descubrimientos sobre el papel del páncreas en la digestión, la función glucogénica del hígado, el sistema nervioso simpático o las sustancias tóxicas y medicinales le condujeron a los más altos reconocimientos en Francia y Europa antes de su muerte, acaecida en 1878 por una enfermedad renal. Introduction à l’étude de la médecine expérimentale (1865), su obra fundamental, desborda el puro ámbito científico incidiendo en el filosófico. Bernard defendió un “racionalismo experimental” por el cual la medicina se constituiría en auténtica ciencia cuando se sustentara sobre el método experimental de la fisiología.

‘Un tratado sobre electricidad y magnetismo’ de James Clerk Maxwell (1831-1879). La síntesis electromagnética, unificación de luz, electricidad y magnetismo.
‘Un tratado sobre electricidad y magnetismo’ de James Clerk Maxwell (1831-1879). La síntesis electromagnética, unificación de luz, electricidad y magnetismo.

Su indiscutible influencia se proyecta hasta nuestros días. El propio Albert Einstein elevó el genio de este físico escocés a la altura de las contribuciones de Isaac Newton. Hijo único de una acomodada familia de clase media, dotado de una gran curiosidad y de extraordinaria inteligencia, presentó su primer artículo científico con solo quince años. Formado en las universidades de Edimburgo y Cambridge, fue en esta última donde sus excepcionales capacidades fueron reconocidas. En 1873 publicó su obra A Treatise on Electricity and Magnetism. Desarrolló las ecuaciones que rigen el comportamiento de las fuerzas eléctricas y magnéticas, llamadas en su honor “ecuaciones de Maxwell”, que sentaron las bases de la electrodinámica y sirvieron de inspiración a teorías posteriores como la relatividad y la cuántica. Dedujo que la luz es en sí misma una onda electromagnética, uno de los hallazgos esenciales de la física. Ocupó la cátedra de Física Experimental de la Universidad de Cambridge, siendo fundador y primer director del célebre Laboratorio Cavendish asociado a dicho puesto.

‘Textura del sistema nervioso del hombre y los vertebrados’ de Santiago Ramón y Cajal (1852-1934). El origen de la neurociencia y obra cumbre de la ciencia española.
‘Textura del sistema nervioso del hombre y los vertebrados’ de Santiago Ramón y Cajal (1852-1934). El origen de la neurociencia y obra cumbre de la ciencia española.

El gran pionero de la exploración del cerebro y el sistema nervioso estudió medicina en la universidad de Zaragoza, especializándose en anatomía. Catedrático en las universidades de Barcelona y Madrid, su trabajo fue reconocido con el Premio Nobel de Fisiología en 1906, junto con Camillo Golgi -cuyo método de tintura mediante cromato de plata, así como el desarrollo industrial de la óptica y la química de colorantes que impulsaron la microscopía, facilitaron la investigación de Cajal de los tejidos nerviosos-. Con la publicación de su obra, capital en la historia de la medicina, Textura del sistema nervioso del hombre y de los vertebrados (1904), estableció los fundamentos citológicos e histológicos de la neurología moderna, así como la estructura y función del sistema nervioso. Dueño de una biblioteca de ocho mil volúmenes, autor literario y pionero de la fotografía, su biografía remite a una inagotable curiosidad intelectual y científica.

‘Tratado de radioactividad’ de Marie Curie (1867-1934). Se desvelan los secretos de los átomos más activos.
‘Tratado de radioactividad’ de Marie Curie (1867-1934). Se desvelan los secretos de los átomos más activos.

Maria Sklodowska, más conocida como Marie Curie, física y química nacida en Varsovia y luego nacionalizada francesa, es una de las figuras científicas más insignes del siglo XX. En 1891 se trasladó a París para estudiar en la Sorbona, y se casó con Pierre Curie cuatro años después. Junto con él, halló dos nuevos elementos químicos, el polonio y el radio, y denominó radiactividad al fenómeno -descubierto por Becquerel- de la extraña emisión de unos rayos invisibles, de gran poder de penetración, por parte de ciertos elementos como el uranio. Obtuvo el Premio Nobel en dos ocasiones: de Física en 1903, compartido con Pierre y con Becquerel, y de Química en 1911. En 1910 había publicado Traité de radioactivité, una recopilación de los nuevosconocimientos, cuatro años después de haber fallecido Pierre. En la I Guerra Mundial auxilió a los aliados instruyendo en el manejo de aparatos de rayos X. Murió de anemia aplásica a los 66 años, posiblemente a causa de la exposición continuada a la radiación. En 1995 sus restos mortales fueron trasladados al Panteón de París, convirtiéndose en la primera mujer en alcanzar este honor.

‘Teoría de la relatividad especial y general’ de Albert Einstein (1879-1955). Un nuevo paradigma del universo.
‘Teoría de la relatividad especial y general’ de Albert Einstein (1879-1955). Un nuevo paradigma del universo.

Nació en Alemania en el seno de una emprendedora familia judía. Se le atribuye un carácter tímido, retraído, paciente y metódico. Aunque incómodo con el sistema escolar, en general sacaba buenas notas, destacando sobre todo en ciencias naturales. En 1905, su año glorioso, en cuatro trabajos publicados en los Annalen der Physik, sentó las bases de la teoría de la relatividad especial y presentaba por primera vez la posibilidad de transformar masa en energía que se expresa con la famosa ecuación E=mc². En 1917 publica su obra Über die spezielle und die allgemeine Relativitästheorie: Gemeinverständlich donde divulga sus ideas sobre la teoría de la relatividad y a ello hace referencia la última palabra del título: Gemeinverständlich (comprensible para todos) . El Premio Nobel de Física le llegó por sus trabajos “sobre el movimiento browniano y su interpretación del efecto fotoeléctrico”, otro de los publicados en 1905. La I Guerra Mundial lo separó de su familia y se manifestó abiertamente antibelicista. Tras el acceso de Hitler al poder se trasladó a Estados Unidos, donde pasó los últimos años de su vida en el Instituto de Estudios Superiores de Princeton, ciudad en la que murió.

‘Principios de mecánica cuántica’ de Paul Dirac (1902-1984). Una nueva dimensión para la física.
‘Principios de mecánica cuántica’ de Paul Dirac (1902-1984). Una nueva dimensión para la física.

Nacido en Bristol, Inglaterra, de carácter introvertido, desde muy joven mostró una sobresaliente capacidad para la ciencia y las matemáticas. Conciso y profundo, se entregó a una presentación técnica precisa y clara -“matemáticamente bella”- de sus trabajos. Realizó la mayor parte de su carrera en Cambridge: solamente diez años después de su llegada a la universidad fue galardonado, junto con Erwin Schrödinger, con el Premio Nobel de Física de 1933 “por el descubrimiento de nuevas teorías atómicas productivas.” Su obra maestra, The principles of quantum mechanics (1930), continúa siendo la referencia de texto sobre la materia. La tecnología actual es en buena medida heredera de estas investigaciones. Su destreza matemática le hizo ganar la cátedra Lucasiana de la universidad de Cambridge que en su día ocupara Newton. Fue uno de los fundadores de la mecánica cuántica y la electrodinámica cuántica, siendo considerado por algunos como el físico más relevante del siglo XX.

‘La teoría del gen’ de Thomas Hunt Morgan (1866-1945). El encuentro entre la genética y la evolución.
‘La teoría del gen’ de Thomas Hunt Morgan (1866-1945). El encuentro entre la genética y la evolución.

El biólogo que desarrolló la teoría de los genes nació en Lexington (Kentucky). Desde niño mostró gran interés en la historia natural, y pasó varios veranos realizando trabajos de biología y geología en las montañas. Tras doctorarse en la Universidad John Hopkins en 1890 comenzó a estudiar el desarrollo embrionario de la mosca de la fruta (Drosophila melanogaster), que luego se convertiría en el objeto preferido para sus investigaciones en genética. En 1894 fue profesor de biología en Pennsylvania y diez años más tarde profesor de zoología experimental en Nueva York, donde continuó trabajando –junto a sus alumnos- sobre la herencia mendeliana. En 1910 descubrió que algunos caracteres se heredan ligados al sexo. Fruto de sus investigaciones escribió su obra The theory of the gene (1926). Desde 1928 hasta su muerte dirigió los laboratorios de ciencias biológicas en el Instituto de Tecnología de California. En 1933 recibió el Premio Nobel de Fisiología y Medicina por la demostración de que los cromosomas son los portadores de los genes, lo que ayudó a convertir la biología en una ciencia experimental.

Islario general de todas las islas del mundo: Presentación del Autor y la Obra, (Parte I).

Presentación de la obra
Presentación de la obra. El libro contiene 360 páginas con 111 mapas: gouache sobre papel; 28 x 21 centímetros.

El autor:

Alonso de Santa Cruz (Sevilla, 1505 – Madrid, 1567), cartógrafo, cosmógrafo e historiador español del Renacimiento. Adscrito a la Casa de Contratación de Indias, navegante y cronista regio.

Hijo de un acomodado hombre de negocios sevillano, aficionado a la cosmología, con él y en contacto con la Casa de Contratación debió de realizar su primera formación. En 1526 participó como «veedor» designado por los armadores en la expedición de Sebastián Caboto, que se proponía alcanzar las Islas de las Especias viajando hacia el oeste. Él mismo había aportado una pequeña cantidad del capital necesario para la expedición, en la que su padre era uno de los mayores inversores.

Sebastián Caboto, Gaboto o Cabot - Italia_(c. Vencia, 1484 – 1557)
Sebastián Caboto, Gaboto o Cabot – Italia_(c. Vencia, 1484 – 1557)

La expedición concluyó en Río de la Plata, donde Caboto abandonó la expedición. Tras cinco años «de muchas guerras y hambres y demasiados trabajos», según declaraba el propio Santa Cruz en un borrador del prólogo de su Islario general, abandonaron el río para regresar a España desde Veracruz, pasando por Bahamas «que fuimos los primeros que vinieron a pasar la dicha canal [de las Bahamas] para venir a España».

De regreso a Sevilla, según la misma relación autobiográfica, se dio al estudio de la astrología y la cosmografía. El Consejo de Indias reunió en 1533 al Piloto Mayor y otros miembros para examinar las cartas e instrumentos náuticos presentados por Santa Cruz. En 1535 comenzó su carrera como cosmógrafo en la Casa de la Contratación de Sevilla, con el cargo de «Cosmógrafo de hacer cartas y fabricar instrumentos para la navegación» y sólo un año después fue nombrado por la reina Juana «nuestro cosmógrafo» con la misión de examinar junto a Sebastián Caboto las cartas e instrumentos náuticos. También en 1535 había inventado y ofrecido para su examen instrumentos y cartas náuticas y un instrumento para medir la longitud por las distancias de la Luna y los planetas. Un año más tarde inventó otro instrumento para calcular la longitud mediante la desviación de la brújula, confeccionando una carta de marear con indicaciones de desviación, lo que demuestra su insatisfacción con los sistemas de proyección cilíndricos, si bien se desconocen, al haberse perdido, las soluciones adoptadas.

En 1554 fue llamado a la Corte por Carlos I, pasando siete años en Valladolid, entregado a la confección de libros de astrología, cosmografía y filosofía al servicio del emperador y de su hijo, Felipe II.

En agosto de 1554 se reunió en Valladolid una Junta de Cosmógrafos, Astrólogos y otras personas doctas en semejantes ciencias para examinar sobre ciertos instrumentos de metal que había presentado el alemán Pedro Apiano con los que pretendía determinar las latitudes; fruto de esa junta será la redacción del Libro de las Longitúdines y manera que hasta ahora se ha tenido de navegar, dirigido a Felipe II, primer estudio sistemático del problema de la longitud.

Nota: Fuente Wikipedia.

Descripción de la obra:

Islario general de todas las islas del mundo es la obra más importante del cosmógrafo sevillano Alonso de Santa Cruz (1505-1567). El atlas se inició durante el reinado del emperador del Sacro Imperio Romano y rey ​​de España Carlos V y se terminó en el de su hijo, el rey Felipe II, a quien se le dedica. Se compone de 111 mapas que representan todas las islas y penínsulas del mundo, y que muestran todos los descubrimientos realizados por los exploradores europeos desde 1400 hasta mediados del siglo XVI. El atlas comienza con una carta de Santa Cruz al rey, en la que justifica su trabajo y explica diferentes conceptos geográficos. Antes de los mapas hay una «Breve introducción de la Sphera» en la que Santa Cruz hace una descripción cosmográfica, ilustrada con 14 figuras astronómicas. El mapa está organizado en cuatro partes: la primera trata del Atlántico Norte; la segunda, del Mediterráneo y las zonas adyacentes; la tercera, del África y el Océano Índico, y la cuarta, del Nuevo Mundo. Los mapas incluyen escalas en latitud y algunas en longitud, y cuerpos de agua con escalas variadas y orientadas con rosas de los vientos. El Islario general es el primer atlas en el que se utiliza papel en lugar de pergamino, cuyo uso era más común para tales cartas en épocas anteriores. El diseño de los mapas es más funcional, con menos atención a la estética y más al detalle geográfico que en los mapas portuláneos y atlas de finales del medievo. Los eruditos han determinado, sobre la base de las fechas que aparecen en los textos descriptivos sobre las islas, que los mapas fueron hechos a partir de la cuarta década del siglo XVI, alrededor de 1539, y que el atlas se completó alrededor del año 1560. Es muy probable que el Islario general fuera parte de una Geografía universal que Santa Cruz nunca concluyó. Santa Cruz fue una de las figuras clave de la Casa de Contratación de Sevilla. Uno de sus primeros trabajos fue un conjunto de cartas esféricas del Nuevo Mundo. Creó muchas otras obras sobre cosmografía y geografía, tales como el Libro de longitudes; y sobre temas históricos, entre los que se encuentran Crónica de los Reyes Católicos y Crónica de Carlos V. Después de la muerte de Santa Cruz, su sucesor, Andrés García de Céspedes, intentó adjudicase el crédito por este trabajo. En la portada, el nombre de Alonso de Santa Cruz ha sido borrado y sustituido por el de García de Céspedes como si él fuera el autor. La obra está dedicada al rey Felipe III. Al manuscrito mismo se han superpuesto textos apócrifos a los originales, con el fin de ocultar la fecha de creación y la autoría real.

En esta entrada comenzamos una serie que conformaran la totalidad de este libro, presentamos en esta primera parte las primeras ocho tablas generales, que posteriormente se irán desarrollando.

Reseña de autores que se utilizan en este libro.
Reseña de autores que se utilizan en este libro.
10090_1_39
Contenido de la Tabla Primera
Tabla Primera
Tabla Primera
Contenido Tabla Segunda
Contenido Tabla Segunda
Tabla Segunda
Tabla Segunda
Contenido Tabla Tercera
Contenido Tabla Tercera
Tabla Tercera
Tabla Tercera
Contenido de la Tabla Cuarta
Contenido de la Tabla Cuarta
Tabla Cuarta
Tabla Cuarta
Contenido de la Quinta Tabla
Contenido de la Tabla Quinta.
Tabla Quinta.
Tabla Quinta.
Contenidos Tabla Sexta
Contenidos Tabla Sexta
Tabla Sexta.
Tabla Sexta.
Contenido Tabla Séptima.
Contenido Tabla Séptima.
Tabla Séptima.
Tabla Séptima.
10090_1_60
Contenido Tabla Octava.
Tabla Octava.
Tabla Octava.