Teselas de La Alhambra: Teselaciones Periódicas del Plano

Las calzadas romanas, tenían –entre otros- como objetivo el facilitar el paso de las personas, caravanas, animales, etc. Por tanto, una de las características más importantes que debieran cumplir sería que no admitiesen huecos para así evitar caídas y lesiones tanto de personas como de animales, generalmente cargados; es decir, se trataba de cubrir por completo la calzada; es, en este sentido, en el que podemos decir que una calzada romana es uno de los primeros ejemplos de la historia de la teselación, pues como veremos ahora una teselación, grosso modo,  no es más que un recubrimiento del plano que no deja resquicios.
Las calzadas romanas, tenían –entre otros- como objetivo el facilitar el paso de las personas, caravanas, animales, etc. Por tanto, una de las características más importantes que debieran cumplir sería que no admitiesen huecos para así evitar caídas y lesiones tanto de personas como de animales, generalmente cargados; es decir, se trataba de cubrir por completo la calzada; es, en este sentido, en el que podemos decir que una calzada romana es uno de los primeros ejemplos de la historia de la teselación, pues como veremos ahora una teselación, grosso modo, no es más que un recubrimiento del plano que no deja resquicios.

En la mitología griega las musas (en griego antiguo μοῦσαι mousai) eran, según los escritores más antiguos, las diosas inspiradoras de la música y, según las nociones posteriores, divinidades que presidían los diferentes tipos de poesía, así como las artes y las ciencias.

La palabra griega μoυσα-ης (mousa-es) significa ‘musa’; μουσειoς-α-oν (mouseios-a-on), ‘concerniente a las musas’; μoυσειoν-oυ (mouseion-ou), ‘templo de las musas’, ‘lugar donde residen las musas’.

Museo Arqueológico de Nîmes, Francia. Segunda mitad del siglo I a. C. La nadadora negra y el delfín.
Museo Arqueológico de Nîmes, Francia. Segunda mitad del siglo I a. C. La nadadora negra y el delfín.

La palabra μoυσειoν (mouseion) dio origen al latín musivus -a -um, que es el antecedente de mosaico. Se dice que los romanos consideraban tan exquisito el arte de hacer mosaicos que pensaban que solo podían crearlo las musas o los favorecidos por ellas.

Un mosaico (del latín mosaĭcum [opus], ‘[obra] relativa a las Musas, artística’) es una obra pictórica elaborada con pequeñas piezas de piedra, cerámica, vidrio u otros materiales similares de diversas formas y colores, llamadas teselas, unidas mediante yeso, u otro aglomerante, para formar composiciones decorativas geométricas o figurativas. Cuando las piezas empleadas son de madera se denomina taracea.

Suelo de la Domus Augustana
Suelo de la Domus Augustana

Teselas

La tesela es una pequeña pieza de piedra, terracota o vidrio coloreado que se utiliza para confeccionar un mosaico. La palabra proviene del latín tessella que, a su vez, procede del término griego τεσσερες.

Los romanos elaboraban los mosaicos con estas pequeñas piezas llamadas teselas, de ahí que se refiriesen a ellos también como opus o ars tessellatum. Las teselas son piezas de forma cúbica, hechas de rocas calcáreas o materiales de vidrio o cerámicas, muy cuidadas y elaboradas y de distintos tamaños. El artista las disponía sobre la superficie, como un rompecabezas, distribuyendo el color y la forma y aglomerándolas con una masa de conglomerante.

Parte de un mosaico romano del puerto de Ostia (Roma) del siglo II a.c.
Parte de un mosaico romano del puerto de Ostia (Roma) del siglo II a.c.

En el mundo griego fue muy frecuente y desde muy temprano (desde fines del siglo V a. C.) el pavimento compuesto por guijas de río (piedrecillas que se encuentran en las orillas) de tamaños y de colores distintos. Con estas guijas se hacían dibujos sencillos de temas geométricos. A finales del siglo III a. C., las teselas vinieron a sustituir estos guijarros polícromos.

Los romanos llegaron a dominar el trabajo hecho con las teselas. Las primeras obras se hacían con teselas muy pequeñas y ya en época imperial el tamaño se hizo mayor, de un centímetro cuadrado. El mosaista llamado Sosos de Pérgamo hizo en el mosaico que se conoce con el nombre de Las palomas el trabajo de un gran profesional; este mosaico está compuesto con teselas muy pequeñas: sesenta teselas ocupan el espacio de un centímetro cuadrado.

Mosaico de Leda y el cisne en el Santuario de Afrodita (Palea Paphos), ahora en el Cyprus Museum, Nicosia.
Mosaico de Leda y el cisne en el Santuario de Afrodita (Palea Paphos), ahora en el Cyprus Museum, Nicosia.
Mosaico Villa Romana
Mosaico Villa Romana
Satiro y ninfa, mosaico romano, Casa del Fauno Pompeya.
Satiro y ninfa, mosaico romano, Casa del Fauno Pompeya.

Las teselas se colocaban sobre un lecho de conglomerante casi líquido. Era una técnica que puede compararse con el puntillismo de los pintores impresionistas del siglo XIX. Para fabricar un pavimento hecho de mosaico había que seguir una serie de pasos que con el tiempo se fueron perfeccionando. El lugar de fabricación era un taller especial. Allí lo primero que se hacía era diseñar el cuadro y este trabajo tomaba el nombre de emblema, voz tomada del griego que viene a significar “algo que se incrusta en”.

Mosaico de las palomas, Museos Capitolinos.
Mosaico de las palomas, Museos Capitolinos.

Significado y Sinónimos

Tesela: Pieza de los dibujos de un mosaico.

El concepto de teselación no forma parte del diccionario de la Real Academia Española (RAE). El término que sí aparece es teselado, referido a aquello que se compone de teselas. Las teselas, a su vez, son los distintos fragmentos que forman parte de un mosaico (obra que se compone a partir de diferentes piezas o trozos).

Teselación: cubrir con teselas pavimentos, bóvedas,… cualquier superficie plana.

Sinónimos: Teselar, azulejar, alicatar, enlosar, embaldosar, solar, adoquinar, empedrar, pavimentar,…

Definición:

Una teselación (mosaico) del plano es una colección de regiones (Teselas, compactos con interior no vacío) llamadas “teselas” tales que:

  • Dos teselas no tienen ningún punto interior en común, es decir, sólo pueden compartir parte de su frontera.
  • La unión de las teselas cubre totalmente el plano.

Tipos de Teselaciones:

clasi teselas

Un poco de Historia

En 1936 Alan Turing demostró la existencia de problemas o situaciones para los que no existen algoritmos finitos; entre estos problemas, que engrosaron los indecidibles de Gödel, se encuentran algunas cuestiones que plantean las teselaciones Aperiódicas o  No Periódicas. Más recientemente se ha sumado a éstos “indecidibles”, el problema de si las ecuaciones diofánticas, -Sistemas de ecuaciones polinómicas de coeficientes enteros con soluciones enteras- poseen o no tales soluciones. En estos momentos no existe ningún argumento matemático fiable que avale tal cuestión.

Sin embargo, el ambiente geométrico en el que se desarrollan las teselaciones del plano y del espacio están gobernadas por este tipo de ecuaciones y gran número de ellas se encuentran determinadas de forma precisa.

Una teselación se denomina “periódica” si existe una sección finita de la teselación (que puede estar formada por varias teselas) que permite mediante traslaciones en dos direcciones no paralelas (sin recurrir a giros o reflexiones), crear la teselación completa.

Una teselación es “aperiódica” o no periódica cuando no tiene traslaciones que hagan que coincida consigo misma.

Teselaciones periódicas: Teselaciones poligonales

Si nos planteamos un método eficaz con el que poder construir mosaicos fácilmente nos encontraremos con que un modo sencillo de hacerlo es usando distintos polígonos. No tenemos más que pensar en las típicas baldosas que ocupan los espacios de nuestras cocinas o los suelos. Si el mosaico está formado por un único tipo de polígonos regulares iguales se dice que el mosaico o la teselación es regular y, si está formado por más de un tipo de polígono regular se dice que es semi-regular. Si los polígonos son irregulares, decimos que la teselación es irregular.

Teselaciones Regulares.

Un primer planteamiento en el estudio de cómo teselar periódicamente el plano, sería el de la utilización de teselas poligonales. Diseños con este tipo de teselas aparecen en motivos  ornamentales de múltiples culturas (egipcia, griega, china, árabe…). Los mosaicos poligonales planos han sido detalladamente estudiados.

El primer paso, consiste en emplear un único polígono regular.

Encontrar los polígonos regulares que teselan el plano, se reduce a resolver la siguiente ecuación diofántica:

daum_equation_1435951882451

Siendo x1 el número de polígonos y x2 el número de lados que concurren en un vértice. Las soluciones que se obtienen para esta ecuación son:

X1=6; x2=3, es decir, seis triángulos.

Tese tri

aaaaaaaaaa

Nota: Para teselar el plano será necesario que los ángulos que concurran en un vértice sumen 360º. (Entendemos 360º por Plano)

Una segunda solución es: X1=4; x2=4, es decir, cuatro cuadrados. Para que un cuadrado tesele el plano será necesario que concurran 4 figuras en un mismo vértice, pues: 360º : 90º = 4

Tese cuad

3142023620_bf48b92ea1_oaaa

Por último, una tercera solución es la que viene dada por: X1=3; x2=6, es decir, tres hexágonos.

Como en las figuras anteriores podemos deducir que necesitamos que concurran 3 hexágonos en un vértice para teselar el plano, ya que:  360º/120º=3

Tese hexa

fase1lado2   Flickr   Photo Sharing

Paseo de Gracia (Gaudí)
Paseo de Gracia (Gaudí)

Vemos que el plano no se puede recubrir con pentágonos regulares puesto que 360º no es divisible por 108º que es la medida de un ángulo interior de un pentágono: 360º = 3 · 108º + 36º.

Tesa pent

En general, tal como se ha mencionado anteriormente, para poder teselar el plano será necesario que los ángulos que concurran en un vértice sumen 360º (identificamos el plano con 360º) para que no queden huecos y poder ocupar todo el espacio del mosaico.

El siguiente paso sería plantear teselaciones con más de un polígono regular, a este nuevo tipo de teselaciones les llamamos semi-regulares.

Teselaciones Semi-regulares

 Una Teselación semi-regular consiste en una pavimentación del plano con un mosaico d polígonos regulares de vértices comunes y arbitrario número de lados; conocer el número posible de ellas, se reduce a resolver la ecuación:

daum_equation_1436096027303

Donde mi es el número de polígonos de xi lados que concurren en un vértice.

Para el caso de sólo dos tipos de polígonos, la ecuación anterior adquiere la forma:

daum_equation_1436096365423

Que posee el siguiente conjunto de soluciones (Seis):

  • m1=3, m2=2; x1=3, x2=4: Tres triángulos y dos cuadrados.

33344tesela(png).svg

  • m1=2, m2=2; x1=3, x2=6: Dos triángulos y dos hexágonos.

3636tesela(png).svg

  • m1=4, m2=1; x1=3, x2=6: Cuatro triángulos y un hexágono.

33336tesela_(png).svg

  • m1=1, m2=2; x1=3, x2=12: Un triángulo y Dos dodecágonos.

31212tesela_(png).svg

  • m1=1, m2=2; x1=4, x2=8; Un cuadrado y dos octógonos.

884tesela

  • m1=2, m2=1; x1=5, x2=10; Dos pentágonos y un decágono.

nnn

Para el caso de tres polígonos se incorporan dos soluciones más:

  • Un triángulo dos cuadrados y un Hexágono

3446tesela(png).svg

  • Un cuadrado, un hexágono y un dodecágono:

4612tesela(png).svg

ocho

mosaicos

TSEMI

TDHC

TDT

THT.jpg

Teselaciones Demi-Regulares

Una teselación demi-regular, también llamada una teselación polimorfa, es un tipo de teselación cuya definición es un tanto problemática. Algunos autores las definen como composiciones ordenadas de las tres regulares y las ocho teselaciones semirregulares, mientras que otros los definen como un mosaico que tiene más de una clase transitividad de vértices (que conduce a un número infinito de posibles teselados).

El número de mosaicos demi-regular comúnmente se da como 14 (Critchlow 1970; Ghyka 1977;  Williams 1979; Steinhaus 1999). Sin embargo, no todas las fuentes aparentemente dan el mismo resultado. Por lo tanto, es necesario tener precaución al tratar de determinar qué se entiende por “teselación demi-regular.”

demi

Los 20 teselados de la ilustración anterior fueron descubiertos por primera vez, por Krötenheerdt en 1969; Grünbaum y Shephard en 1986 estructurarían estos teselados con más precisión.

Cuando sólo usamos los tres teselados regulares y los 8 teselados semi-regulares. Existen 14 teselados demi-regulares. Algunos de ellos son:

Imagen4

Más tamaños   Branco e Azul   Flickr  ¡Intercambio de fotos

Teselaciones Irregulares

 Hay múltiples métodos para construir teselaciones poligonales con formas irregulares. Uno de ellos consiste en modificar polígonos que teselen el plano de forma que los polígonos resultantes permitan el “encaje” con otra tesela con igual forma.

Los teselados irregulares están construidos a partir de polígonos regulares e irregulares que al igual que todas las teselaciones cubren toda la superficie sin sobreponerse y sin dejar espacios vacíos. La distribución de los polígonos en los distintos vértices es cíclica, pueden darse 3, 4, 5 y más distribuciones que harán que la periodicidad sea más espaciada requiriendo dibujar una gran porción de la tesela para poder ver un ciclo completo, para tal efecto veamos dos ejemplos de la distribución del pentágono:

irreg

irreg2

Teselación de El Cairo

Hay algunos polígonos especiales que dan lugar a mosaicos muy vistosos como el Mosaico del Cairo, que recibe su nombre por estar presente con frecuencia en los pavimentos de esa  ciudad egipcia y en los murales y arte islámico, de ahí su nombre.

El pentágono posee aquí 5 lados de la misma medida. Tiene dos ángulos rectos, un ángulo de 144° y dos ángulos de 108°.Como para todo pentágono, la suma de sus ángulos es de 540°

Tesela_cairo.svg

Loseta_de_El_Cairo_2 ggg

Ver clip

La Teselación pentagonal de El Cairo, puede considerarse también hexagonal.

Pavimento en El Cairo
Pavimento en El Cairo

Los teselados de la Alhambra y Escher

Mosaicos en la Alhambra con el símbolo de Carlos V.
Mosaicos en la Alhambra con el símbolo de Carlos V.
Un azulejo renacentista, con una corona, la pavimentación en el suelo en la Alhambra de Granada, España.
Un azulejo renacentista, con una corona, la pavimentación en el suelo en la Alhambra de Granada, España.

Siempre había sido un enigma saber cuántas formas había para rellenar el plano con las teselas al estilo de la Alhambra. Se conocía como el problema del teselado o del friso. Había conjeturas pero no fue hasta 1910 que Ludwig Bieberbach primero demostró que el número de formas de solucionarlo era finito y posteriormente que solo había diecisiete formas simples de hacerlo.

c31
Lacerías en la Alhambra

Existen en la naturaleza diecisiete grupos cristalográficos planos, que se corresponde con el problema de las teselas. Pero un tema curioso es que hasta hace muy poco tan solo se habían identificado trece de ellos. Recientemente han aparecido los cuatro que faltaban.

alhambra2

En los adornos ornamentales de suelos y paredes de la Alhambra se pueden encontrar ejemplos de cada uno de los grupos cristalográficos planos. Quizás  no resulta sorprendente que en la Naturaleza aparezcan los 17 grupos, pero desde luego lo es que en la Alhambra de Granada puedan verse materializados en sus adornos. Los creadores de los mosaicos de la Alhambra de Granada no podían conocer el teorema de clasificación de Fedorov, y por lo tanto no conocían cuántos grupos de simetrías podían usarse para rellenar el plano con baldosas(teselación del plano), por eso resulta impactante que conocieran todos y cada uno de los 17 existentes.

4371810324_55de105204_o

El arte desarrollado por los árabes en la península Ibérica, presenta un gran desarrollo del concepto de simetría, debido a su carácter abstracto. De acuerdo a los principios religiosos les estaba estrictamente prohibido a los artistas musulmanes representar seres vivientes en sus creaciones. Esta limitación, en lugar de empobrecer su creatividad, sirvió de aliciente para estimular sus mentes y lanzarse por caminos de gran belleza y originalidad. Su conocimiento de las simetrías alcanzó tal grado de magnitud que fueron los únicos en descubrir y utilizar sabiamente en sus decoraciones los 17 tipos de simetría plana.

Más tamaños   Decoración Geométrica   Flickr  ¡Intercambio de fotos

Este motivo hace que la Alhambra de Granada tenga ese especial interés para los matemáticos, ya que los artistas andalusíes-granadinos pusieron de manifiesto con su trabajo una nueva forma de abordar el trabajo científico buscando nuevas ideas desde el ejercicio libre y audaz del método creativo, basado en hacer variaciones sobre una misma figura.

La Alhambra es, actualmente, el único monumento construido antes del descubrimiento de la teoría de grupos que cuenta con al menos un ejemplo de cada uno de los grupos  cristalográficos planos.

Apuntes originales de Escher, La Alhambra 1936.
Apuntes originales de Escher, La Alhambra 1936.

Después de visitar la Alhambra por primera vez, Escher intentó unos nuevos diseños, de los que se conservan bocetos de 1926, todavía muy rudimentarios. Tras una segunda visita, esta vez junto con su mujer, en 1936, copió durante varios días motivos allí representados y descubrió un sistema para representar particiones periódicas del plano, consiguiendo descubrir los 17 grupos de simetría planos que figuran en la Alhambra, a pesar de sus rudimentarios conocimientos matemáticos. Pero no se detuvo aquí, sino que además introdujo el color, cosa que nadie había hecho hasta esa fecha.

Las cinco Teselas que más se repiten en los mosaicos de La Alhambra se llaman “el hueso”, “el pez volador”, ”el avión” , “la pajarita”, “el pétalo” y aunque no es propiamente una tesela “el sello de Salomón” es de las ornamentaciones más frecuentes.

Sello de Salomón
Sello de Salomón
El Avión (Construcción)
El Avión (Construcción)

07-07-2015 9-49-20

El Avión o El Sombrero (Construcción)
El Avión o El Sombrero (Construcción)
El pétalo (Construcción)
El pétalo (Construcción)
El Hueso (Construcción)
El Hueso (Construcción)
escher_symmetry_by_pieter_musterd_from_flickr_cc-nc-nd
Escher en relieve

ver clip

Todo lo relatado en este artículo se refiere a teselaciones periódicas del plano. En una próxima entrada sobre teselaciones, completaremos el tema tratando las Teselaciones NO periódicas. Queda pendiente.

Variaciones (2)

Anuncios

Ars Qubica y las teselaciones

Ayer llegó a mis ojos la primicia en Vimeo de “Ars Qubica”, la última creación del admirado y genial infógrafo aragonés Cristóbal Vila, un espléndido trabajo sobre el “arte” de la teselación; en él podemos recrearnos en las formas geométricas de conocidos monumentos como la fachada mudéjar de la Seo de Zaragoza o las baldosas hexagonales de Gaudí que pavimentan el suelo del Paseo de Gracia en Barcelona.

Una maravillosa obra de divulgación que como en otros trabajos de este genial diseñador (véase Inspirations o Nature by number) buscan mejorar la percepción de las matemáticas en la sociedad.

Penrosetilingp1

Ars Qubica busca que las matemáticas conecten con cualquier persona a través del arte y por supuesto que lo consigue. En otra ocasión estudiaremos en este blog con detalle el inagotable mundo de las teselaciones periódicas como las del genial Escher o aperiódicas como las de Penrose, pero ahora se impone disfrutar de este prodigioso vídeo que espero disfruten.

Aquí presento un clip de prueba para una próxima publicación sobre teselaciones Periódicas y No periódicas.

 

De los cielos: Mitos, Arte y Etimologías.

En estas nuevas entradas iré recogiendo alguna unidades de trabajo que realicé con mis alumnos en el IES Pablo Picasso de Málaga durante el Curso Académico 2011/2012, donde desarrollamos el Proyecto Analema. Esta es una de dichas unidades, espero sea de su agrado.

Nota: Lamento que no puedan observarse las animaciones, es una presentación PowerPoint.

Pedro Olalla: ¿Por qué Grecia?

Pedro Olalla
Pedro Olalla

Pedro Olalla González de la Vega (Oviedo, España, 1966) es escritor, helenista, profesor, traductor, fotógrafo y cineasta, y en estos campos desarrolla su actividad profesional en colaboración con editoriales, universidades e instituciones culturales de diversos países del mundo. Desde hace veintiocho años, mantiene una intensa relación con Grecia, país en el que se inició en el helenismo y en el que, en 1994, fijó su residencia para dedicarse a la investigación, la creación y la didáctica. Nota de su blog personal, que puedes visitar desde aquí: (Haz click)

Con este clip nos deleita, y nos propone una espléndida visión de lo “griego”, hacer más comentarios sobre este conferencia audiovisual, sería casi agredirla, así que prefiero que sean ustedes, los lectores, los que la gocen.

Conferencia audiovisual de Pedro Olalla sobre la importancia del elemento griego en la conformación de la cultura. Pronunciada en la “X Jornada Clásica de Sagunto” (Sagunto, España, 17/11/2012), en un clima marcado por la nueva reforma educativa española, que reduce la presencia de las humanidades y, en especial, el estudio del latín y del griego.

Los números transfinitos: La hipótesis del continuo; Hablemos del infinito (Parte IV)

Matrix
Matrix

Los números reales pueden clasificarse en dos tipos de diferentes maneras, por ejemplo, como hemos visto en la entrada anterior en racionales e irracionales, o en algebraicos y transcendentes.

Llamamos números construibles a los números que con ayuda de los instrumentos clásicos de dibujo (regla y compás) y, sólo éstas, se pueden representar sobre una recta en la que hemos señalado dos puntos que representan al 0 (origen) y al 1 (unidad de medida). Todos los números racionales son construibles y algunos irracionales también.

Un número decimos que es algebraico, si es raíz de una ecuación polinómica, por ejemplo el número 5 es algebraico, pues puede obtenerse como solución de la sencilla ecuación: 2x – 10= 0; También lo es “el número áureo” , que además es irracional, pues se obtiene como solución de la ecuación cuadrática:

xxxx

Nota: Sobre este número y sus construcciones, así como las que origina puede verse en este blog el post: La divina proporción.

Todos los racionales son algebraicos, y, también lo son todos los irracionales construibles. Al revés no es cierto, de manera que los números construibles son un subconjunto estricto o propio (no igual) de los algebraicos. Los números transcendentes son el resto, entre los que se encuentran los famosos pi, e,…

Cantor probó que la clase de los números algebraicos, que es mucho más extensa que la de los números racionales, tiene sin embargo, la misma potencia que el conjunto de los números naturales: 0, es decir, es un conjunto infinito numerable. Por lo tanto, son los números transcendentes los que les dan al sistema de los números reales el fuerte carácter de densidad que trae como consecuencia su potencia más alta.

En resumen, podemos decir:

• Dentro del conjunto de los irracionales existe un conjunto de números que no son algebraicos. A esos números los llamamos trascendentes.

• Como los números algebraicos son numerables, el resto de números reales, los trascendentes, tienen que tener la potencia del continuo.

Una vez que en 1874, Cantor demuestra que el cardinal del conjunto de los naturales es estrictamente menor al de los números reales y, después de analizar la numerabilidad de los conjuntos de números algebraicos y transcendentes. Lo siguiente a preguntarse es si existen conjuntos cuyo cardinal esté incluido estrictamente entre el de ambos conjuntos, es decir:

¿Existe algún conjunto A, cuyo tamaño sea MAYOR que el de los números naturales, pero MENOR que el de los números reales?

Georg Cantor
Georg Cantor

Cantor nos responde con “La hipótesis del continuo” (en lo sucesivo HC).

HC: “No existen conjuntos cuyo tamaño esté comprendido estrictamente entre el de los Naturales y el de los números Reales”.

Hipótesis del continuo
Hipótesis del continuo

Cantor trató en vano demostrar la hipótesis del continuo, era sólo una “conjetura”.

David Hilbert (1862-1943)
David Hilbert (1862-1943)

La demostración (o negación) de la Hipótesis del Continuo es uno de los 23 problemas de Hilbert (de hecho, es el primero), algunos de los cuales todavía no han sido resueltos. Fueron propuestos por Hilbert en 1900 como desafío a las generaciones presentes y futuras de matemáticos.

Al igual que la geometría euclídea se sustenta en un “paquete” de postulados o axiomas, la Teoría de Conjuntos también lo hace en base a un sistema de axiomas que denominamos Axiomática Zermelo-Fraenkel, en lo sucesivo axiomática ZF; Cuando añadimos a este conjunto de axiomas el llamado y muy cuestionado “Axioma de elección”, el sistema lo notamos por ZFC.

Kurt Gödel (1906-1978)
Kurt Gödel (1906-1978)

Pues bien, el no menos genial Kurt Gödel demostró en 1940 que no se podía demostrar como falsa la hipótesis del continuo partiendo de la axiomática  ZF (Zermelo-Fraenkel), incluso si se añadía el Axioma de Elección (ZFC). Pero, años más tarde, en 1963, Paul Cohen, demostró, a su vez, lo contrario, esto es: que tampoco podía probarse su veracidad partiendo de dichos axiomas. Así pues, la HC es indecidible (indemostrable): ni puede afirmarse, ni puede negarse.

Paul J. Cohen (1934-2007)
Paul J. Cohen (1934-2007)

Dicho de otro modo Gödel nos asegura que puede construirse una teoría de conjuntos consistente donde la HC fuese cierta y, simultáneamente Cohen también nos asegura la construcción de una teoría de conjuntos consistente donde la HC es falsa. Es decir, obtenemos sistemas axiomáticos consistentes en ambos casos. Una situación análoga a la que se obtiene cuando en geometría admitimos como cierto el quinto axioma o postulado de las paralelas o lo negamos en todas sus formas posibles, el resultado provoca la existencia de geometrías distintas y consistentes, las llamadas geometrías no euclídeas: la propia euclídea, la debida a Riemann (Geometría elíptica) y la de Bolyai-Lobachevsky (Geometría hiperbólica).

Geometrías no euclídeas
Geometrías no euclídeas

Hemos visto en este trayecto como la densidad determina la cardinalidad o potencia de un conjunto. Cantor, nos sube ahora un peldaño de su particular escalera y comienza a plantearse si la dimensión determina de alguna manera la potencia de un conjunto.

Nota:

En matemáticas decimos que una recta es un objeto de dimensión 1 (un punto de una recta viene determinado por un número real), un plano de dimensión 2 (un punto del plano viene determinado por dos números reales), el espacio tridimensional de dimensión 3 (un punto de nuestro espacio cotidiano viene determinado por una terna de números reales: tres), etc.

Y nos propone la pregunta: ¿Dónde hay más puntos en un segmento o en un cuadrado?

O, aún más fuerte: ¿dónde hay más puntos, en un segmento, en un cuadrado o en un cubo?

Dimensiones: Segmento, cuadrado, cubo.
Dimensiones: Segmento, cuadrado, cubo.

De nuevo nos pone la imaginación a prueba.

Y, Cantor de nuevo destroza la intuición con su imponente genio, demostrando que:

“El segmento, el cuadrado y el cubo (objetos de dimensiones distintas) poseen la misma potencia: la potencia del continuo, 1”.

Para ello, en un derroche de elegancia  propone el siguiente emparejamiento (biyección de nuevo) entre los puntos del segmento [0,1] y los del cuadrado que tiene por lado la misma longitud que el segmento, esto es: 1.

Biyección entre los puntos de un segmento y los de un cuadrado.
Biyección entre los puntos de un segmento y los de un cuadrado.

Si tomamos un punto cualquiera de la superficie del cuadrado de coordenadas (x,y), ocurrirá, por como ha sido construido el cuadrado que, x e y serán  números reales entre el 0 y el 1.

Tomemos en particular un punto concreto del cuadrado, el de la imagen:

(x,y)=(0,3143256408876…, 0,6244356998124…)

Cantor asocia ahora este punto con un único punto del segmento [0,1] del siguiente modo:

El nuevo número “r”, se obtiene alternando los decimales de x e y, así, su primera cifra decimal será la primera cifra decimal de x, su segunda cifra decimal será la primera cifra decimal de y, la tercera cifra decimal será la segunda de x, la cuarta la segunda de y, la quinta la tercera de x,…y de nuevo “así sucesivamente”.

El número que hemos construido “r”, será:

r=0,36124434235566490988817264…

De este modo ni un solo punto del cuadrado se quedará sin pareja en el segmento. La biyección está establecida y, por tanto, la potencia del cuadrado coincide con la del segmento [0,1], que como ya hemos visto es 1.

Y, ¿qué ocurre con el cubo?, pues exactamente igual:

Biyección entre un segmento y un cubo
Biyección entre un segmento y un cubo

En este caso, tenemos un punto (x,y,z) del espacio tridimensional de coordenadas:

x=0,3143256408876…, y=0,6244356998124…, Z=0,7763423906215…

El nuevo número “r”, se obtiene de nuevo alternando los decimales ahora de x, y, z así, su primera cifra decimal será la primera cifra decimal de x, su segunda cifra decimal será la primera cifra decimal de y, la tercera cifra decimal será la primera de z, la cuarta la segunda de x, la quinta la segunda de y, la sexta la segunda de z,…y de nuevo “así sucesivamente”.

El número que hemos construido “r”, será:

r=0,367127446343234552663499090…

Y de este modo establecemos otra biyección que permite asegurar que la potencia del cubo coincide con la del segmento [0,1], es decir, 1.

¡Sorprendentemente, aunque se amplíe el conjunto de puntos de un segmento al de los puntos de un cuadrado o un cubo, no hay más puntos en el cubo ni en el cuadrado que en el segmento, por más raro que esto resulte no incrementamos realmente el número de objetos con los que trabajamos!

Este resultado que puede ampliarse al hiper-espacio (Espacio de dimensión 4) o a otros de mayor dimensión, chocaba tan frontalmente con la intuición que Cantor mismo escribía en una ocasión a Dedekind, en 1877 con ocasión, precisamente de su construcción de la biyección entre el segmento y el cuadrado: <<Je le vois, mais je ne le crois pas>> (<<Lo veo pero no lo creo>>), y le pedía vehementemente a su amigo que revisase cuidadosamente la demostración.

Pero el incansable Cantor, sigue subiendo peldaños y ahora, a la vista de los resultados, piensa si las dos únicas potencias son la de los naturales 0  y la del continuo 1, y se pregunta:

¿Existirán conjuntos con un cardinal o potencia mayor que 1?

Aleph
Aleph

La respuesta es afirmativa y en la próxima y espero que última entrada sobre este apasionante tema, veremos de qué conjuntos se trata.

Los números transfinitos: La potencia del continuo; Hablemos del infinito (Parte III)

Aleph
Aleph

La potencia del “continuum”

En entradas anteriores, hemos comprobado como N, Z, Q y otros conjuntos (Pares, primos, triangulares…) poseen la misma potencia: Aleph sub cero. Uno podría empezar a preguntarse, con razón, si todos los conjuntos infinitos de números poseen la misma potencia, pero Cantor, como veremos enseguida, demostró de manera concluyente que no es éste el caso.

El conjunto de los números reales, por ejemplo, como veremos enseguida, posee mayor potencia que, hasta ahora, la única que conocemos: nuestro Aleph sub cero.

Para demostrar esto Cantor utilizó un razonamiento por reductio ad absurdum” (La reducción al absurdo consiste, básicamente, en suponer verdadero lo contrario de lo que deseamos demostrar y a partir de esa premisa llegar a una contradicción) comparando el conjunto de números naturales con el conjunto de los infinitos  números reales comprendidos entre 0 y 1: [0,1].

Nota: Es fácil probar que [0,1] es un conjunto infinito, bastaría encontrar una biyección entre él y uno cualquiera de sus sub-intervalos, lo que está probado, y hacer uso de nuestra definición Dedekind-Cantor de conjunto infinito dada en entradas anteriores.

El razonamiento fue el siguiente:

El argumento de la diagonal

Supongamos que el conjunto de números reales entre 0 y 1 es numerable (Posee la misma potencia que N, aleph sub cero) y supongámoslos expresados todos ellos como decimales que no terminan en una sucesión de ceros, que, por ejemplo 1/3 aparecería como 0,3333…, 1/2 como 0,499999… etc.

Cantor  nos propone considerar la siguiente ordenación de todos los infinitos números reales de [0,1]:

El argumento de la diagonal.
El argumento de la diagonal.

Este famoso argumento se conoce con el nombre de “Argumento de la Diagonal de Cantor”.

“Construyamos un número real”, en la que su primera cifra decimal sea la primera cifra decimal del primer número de la lista, su segunda cifra decimal la del segundo número de la lista, la tercera es la tercera cifra decimal del tercer número, etc. En la imagen anterior, nuestro número sería el 0,2496218… y tiene infinitas cifras decimales, ya que nuestra lista ordenada contiene infinitos números. Es fácil prever que el número que acabamos de construir coincide en una cifra decimal, al menos, con cada uno de los de la lista (la primera con el primero, la segunda con el segundo, la tercera con el tercero, etc.). Desde luego, es incluso posible que coincida en todas sus cifras decimales con alguno de la lista, y de hecho esto sucederá necesariamente si, como afirmamos al principio, nuestra lista contiene todos los números reales entre 0 y 1.

De nuevo aparece la genialidad del cejudo Cantor y nos propone:

“Hagamos sólo una cosa más…, sugiere Cantor”.

“Sumemos uno a cada cifra decimal del número construido, de modo que el 1 se convierta en 2, el 2 en 3…, y el 9 en 0″. Nuestro número anterior será ahora, por tanto, 0,3507329…,¿y qué?, nos podemos preguntar, seguramente que este número también estará contenido en la lista, pues hemos aceptado como hipótesis que la lista contiene a todos y éste es uno de ellos.

De nuevo la intuición nos precipita. Analicemos la situación con algo de más calma:

Antes, la primera cifra coincidía con la primera del primer elemento de la lista, pero como le hemos sumado uno, acabamos de asegurar que nuestro nuevo número no coincide con el primero de la lista, pues esa cifra decimal ya no coincide. Igual ocurre con el segundo elemento: nuestro número no es ése, pues al menos en la segunda cifra decimal no coinciden. Y eso mismo pasa con absolutamente con todos los elementos de la lista. Así, nuestro número es distinto de todos y cada uno de ellos al menos en una cifra decimal, porque así lo hemos construido, es decir, nuestro número no está en la lista.

¡Hemos encontrado la contradicción!

Habíamos supuesto que [0,1] era numerable, es decir, que podríamos ordenar todos sus números (la lista contenía todos y cada uno de los infinitos números reales entre 0 y 1…) lo que, como acabamos de ver es falso, pues el número que hemos construido no se encuentra en la lista.

Dicho de otro modo el intervalo [0,1] es “incontable” en el sentido “cantoriano” más amplio, pues, no sólo no podemos contar el número de elementos que posee en el sentido cuantitativo (“tradicional”), sino que tampoco podemos ponerlo en biyección  con N, es decir, no podemos ordenarlos de ninguna manera. Su cardinal es infinito, pero “más infinito” que el de los naturales: es un infinito que decimos en Matemáticas “incontable”.

En forma de Teorema:

Teorema:  

“El conjunto de números reales del intervalo [0,1] no es numerable, es decir, no se puede poner en correspondencia uno-uno con el conjunto de los números naturales”.

Llegado a este momento, para extender este resultado al conjunto R de los números reales bastará con establecer una biyección entre este intervalo y los reales, no es difícil encontrar una tal biyección entre [0,1] y R, pongamos de ejemplo:

Biyección entre [0,1] y R
Biyección entre [0,1] y R

Es momento de poder exclamar ¡Hemos encontrado dos infinitos diferentes!, De modo que, ya no es posible decir simplemente infinito como contraposición a finito: el infinito empieza a dejar de ser la borrosa idea y sin distinción que el apeiron” griego nos proponía, sino que existen de diversos grados o tamaños, unos mayores que otros y, que como veremos más tarde, hasta se pueden ordenar.

Cantor denominó al nuevo infinito encontrado asociado a R, “potencia del continuo”, notado como “c” y posteriormente, como veremos ahora, por Aleph sub uno (ℵ1).

Potencia del continuo.
Potencia del continuo.
La potencia del continuo
La potencia del continuo

Cantor demostró una propiedad bastante sencilla y razonable (aunque, como ya hemos visto, la intuición se debe limitar enormemente en este terreno de lo infinito): Si dos conjuntos son numerables, también lo es el conjunto que se crea al unirlos.  Lo que le permitió explorar en el territorio siempre misterioso de los números irracionales.

Raíz cuadrada de 2, inconmensurable pitagórico.
Raíz cuadrada de 2, inconmensurable pitagórico.
Números Irracionales.
Números Irracionales.

Este conjunto ya atormentó a los pitagóricos hasta el punto que decidieron esconder su descubrimiento: guardaron en secreto la prueba de que la diagonal del cuadrado y su lado son inconmensurables. Como el conjunto de los números reales (no numerable como hemos visto) es la unión de racionales e irracionales, éstos tienen que ser no numerables ya que si fueran numerables, lo tendría que ser R por ser la unión de ellos y no lo es.

daum_equation_1357809933796

En la entrada anterior hicimos alusión a la “densidad” de Q, en los términos de que entre dos racionales cualesquiera, por muy próximos que se encuentren siempre podremos encontrar infinitos más, pues bien, el conjunto I de los números irracionales es “infinitamente” más denso que el de los racionales, por poner un ejemplo gráfico:

Podemos emplear, puntos azules para los números racionales y rojos para los irracionales.

Como acabamos de decir, los números racionales tienen la propiedad de ser densos. En otras palabras, en un segmento cualquiera [a,b] de la recta real, por mucho zoom que hagamos para “ampliar su tamaño” siempre veremos infinitos puntos azules infinitamente próximos entre sí.

Pero a pesar de este hecho, los racionales dejan “huecos” o “poros” en la recta real que son rellenados por los números irracionales, y sorprendentemente, el número de poros es “muchísimo” mayor que el de puntos azules (hasta el punto de que no se pueden numerar). El aspecto visual que tendría el segmento o la recta una vez rellenada con los números irracionales sería el de una línea roja.

Racionales irracionales segmento

Para entender la enorme diferencia de magnitud entre el número de números racionales y de irracionales (es decir, entre 0 y la potencia del continuo 1 ), hagamos el siguiente experimento mental: imaginemos que un jugador lanza un dardo de punta infinitamente fina sobre un segmento cualquiera de la recta real. Pues bien, ¿saben cuál es la probabilidad que tiene, a priori, de acertar en un número racional (un punto azul)? La respuesta es ¡0!.

Es decir, si eligiéramos un número real al azar, la probabilidad de que sea racional es ¡0!.

Resulta probado, pues, que I es no numerable mientras que ya sabíamos que Q sí lo es. Así que es la extrema densidad de los irracionales (ese conjunto cuya existencia descubrieron los pitagóricos del que se conocían no muchos elementos: los radicales de los números primos, el número Pi, el número áureo Fi, … ), la que asegura que la potencia del continuo es mayor que la de N.

aleph y potencia

“El conjunto de los números irracionales I tiene la potencia del continuo”. G. Cantor.

Pero Cantor iría todavía más lejos, y comienza a cuestionarse la existencia de un posible conjunto que tenga una potencia comprendida entre la potencia de N, 0  y la potencia del continuo, 1 que hemos descubierto hoy. En definitiva, Cantor empezó a conjeturar la conocida y cuestionada Hipótesis del Continuo.

Pero esto lo veremos en la próxima entrada. (haz click para seguir leyendo la Parte IV).